Algebra Colloquium 20:4 (2013) 671-680

Algebra Colloquium © 2013 AMSS CAS & SUZHOU UNIV

On the Attached Primes and Shifted Localization Principle for Local Cohomology Modules^{*}

Tran Nguyen An

Thai Nguyen College of Education, Thai Nguyen City, Vietnam E-mail: antrngkt@yahoo.com

> Received 6 June 2010 Revised 29 June 2011

Communicated by Zhongming Tang

Abstract. Let (R, \mathfrak{m}) be a Noetherian local ring and M a finitely generated R-module. For an integer $i \geq 0$, the Artinian *i*-th local cohomology module $H^i_{\mathfrak{m}}(M)$ is said to satisfy the shifted localization principle if

$$\operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)), \, \mathfrak{q} \subseteq \mathfrak{p}\}$$

for all $\mathfrak{p} \in \operatorname{Spec}(R)$. In this paper we study the attached primes of $H^i_{\mathfrak{m}}(M)$ and give some conditions for $H^i_{\mathfrak{m}}(M)$ to satisfy the shifted localization principle.

2010 Mathematics Subject Classification: 13D45, 13E05

Keywords: local cohomology modules, attached primes, pseudo supports, shifted localization principle

1 Introduction

Throughout this paper, let (R, \mathfrak{m}) be a Noetherian local ring and let M be a finitely generated R-module with dim M = d. It is clear that

$$\operatorname{Ass}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}}) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Ass}_{R}(M), \, \mathfrak{q} \subseteq \mathfrak{p}\}$$

for all $\mathfrak{p} \in \operatorname{Spec}(R)$. We consider the analogous formula for attached primes of the Artinian *i*-th local cohomology module $H^i_{\mathfrak{m}}(M)$ as follows:

$$\operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)), \mathfrak{q} \subseteq \mathfrak{p}\}$$

for all $\mathfrak{p} \in \operatorname{Spec}(R)$. We say that $H^i_{\mathfrak{m}}(M)$ satisfies the shifted localization principle if this formula holds true. In general, $H^i_{\mathfrak{m}}(M)$ satisfies the weak general shifted localization principle, i.e.,

$$\operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) \subseteq \{\mathfrak{q}R_{\mathfrak{p}} \,|\, \mathfrak{q} \in \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)), \, \mathfrak{q} \subseteq \mathfrak{p}\}$$

^{*}The author is supported by the Vietnam National Foundation for Science and Technology Development (Nafosted).

for all $\mathfrak{p} \in \operatorname{Spec}(R)$ (cf. [11, Theorem 4.8], see also [2, 11.3.8]). In case R is a quotient of a Gorenstein local ring, $H^i_{\mathfrak{m}}(M)$ always satisfies the shifted localization principle (cf. [11, Theorem 3.7], see also [2, 11.3.2]). However, the shifted localization principle is not valid in general. For example, let (R, \mathfrak{m}) be the Noetherian local domain of dimension 2 constructed by Ferrand and Raynaud [7] such that R has an associated prime ideal $\hat{\mathfrak{p}}$ of dimension 1. Then $H^1_{\mathfrak{m}}(R)$ does not satisfy the shifted localization principle (cf. [2, 11.3.14]). Moreover, if (R, \mathfrak{m}) is a Noetherian local domain of dimension 1 that is not a homomorphic image of a Gorenstein local ring (such a ring exists by [7]), then it is clear that $H^i_{\mathfrak{m}}(M)$ satisfies the shifted localization principle for any finitely generated R-module M and any integer i. Therefore, it is natural to ask under which conditions the shifted localization principle is valid for $H^i_{\mathfrak{m}}(M)$.

The purpose of this paper is to study the attached primes of $H^i_{\mathfrak{m}}(M)$ in order to give some conditions for $H^i_{\mathfrak{m}}(M)$ to satisfy the shifted localization principle.

For each ideal I of R, we denote by Var(I) the set of all prime ideals of R containing I. Before stating the main results, we recall the following property on an Artinian *R*-module *A*, which was considered first by Cuong and Nhan [5]:

$$\operatorname{Ann}_{R}(0:_{A}\mathfrak{p}) = \mathfrak{p} \text{ for all } \mathfrak{p} \in \operatorname{Var}(\operatorname{Ann}_{R}A).$$
(*)

If R is complete with respect to the \mathfrak{m} -adic topology, it follows by the Matlis duality that the property (*) is satisfied for all Artinian *R*-modules *A*. If *R* is universally catenary and all its formal fibres are Cohen-Macaulay, then $H^i_{\mathfrak{m}}(M)$ satisfies the property (*) for any integer i (cf. [9, Corollary 3.2]). However, there exists a local cohomology module $H^1_{\mathfrak{m}}(R)$ that does not satisfy the property (*) (cf. [5, Example (4.3]). It should be mentioned that if R is not complete, then the study of the property (*) for $H^i_{\mathfrak{m}}(M)$ is important since it gives a lot of information on the module M and the base ring R (cf. [4, 5, 9, 10, 12]). Also, the results in this paper show that the property (*) is closely related to the shifted localization principle.

Note that $H^d_{\mathfrak{m}}(M)$ satisfies the property (*) if and only if the ring $R/\operatorname{Ann}_R H^d_{\mathfrak{m}}(M)$ is catenary (cf. [4]). Together with this fact, our first main result gives some characterizations for the top local cohomology to satisfy the shifted localization principle.

Theorem 1.1. The following statements are equivalent:

- (i) $H^d_{\mathfrak{m}}(M)$ satisfies the shifted localization principle.
- (ii) The ring $R/\operatorname{Ann}_R H^d_{\mathfrak{m}}(M)$ is catenary.
- (iii) $H^d_{\mathfrak{m}}(M)$ satisfies the property (*).
- (iv) $H_{\mathfrak{p}R_{\mathfrak{p}}}^{d-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})$ satisfies the shifted localization principle for all $\mathfrak{p} \in \operatorname{Supp}(M)$. (v) $H_{\mathfrak{p}R_{\mathfrak{p}}}^{d-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})$ satisfies the property (*) for all $\mathfrak{p} \in \operatorname{Supp}(M)$.

For the lower levels i < d, we show how the property (*) is related to the shifted localization principle for minimal attached primes and how it behaves under localization.

Consider the following conditions:

- (a) $\min \operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \min \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)), \mathfrak{q} \subseteq \mathfrak{p}\}$ for all $\mathfrak{p} \in \operatorname{Spec}(R).$
- (b) $H^i_{\mathfrak{m}}(M)$ satisfies the property (*).
- (c) $H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_\mathfrak{p}}(M_\mathfrak{p})$ satisfies the property (*) for all $\mathfrak{p} \in \operatorname{Supp}(M)$.

Theorem 1.2. Let $i \ge 0$ be an integer.

- (i) If $R/\operatorname{Ann}_R M$ is catenary, then the conditions (a), (b), (c) are equivalent.
- (ii) If $H^i_{\mathfrak{m}}(M)$ satisfies the shifted localization principle, then the conditions (a) and (b) are satisfied.

Following Brodmann and Sharp [3], the *i*-th pseudo support of M is defined as

$$\operatorname{Psupp}_{R}^{i}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_\mathfrak{p}}(M_\mathfrak{p}) \neq 0 \}$$

If R is universally catenary and all its formal fibres are Cohen-Macaulay, then $\operatorname{Psupp}_{R}^{i}(M) = \operatorname{Var}(\operatorname{Ann}_{R}H_{\mathfrak{m}}^{d}(M))$ is a closed subset of $\operatorname{Spec}(R)$ in the Zariski topology, but in general $\operatorname{Psupp}_{R}^{i}(M)$ is a proper subset of $\operatorname{Var}(\operatorname{Ann}_{R}H_{\mathfrak{m}}^{d}(M))$ and is not closed (cf. [3] and [9]). Our last main result gives some information on the pseudo supports of M and the attached primes of the local cohomology modules $H_{\mathfrak{m}}^{i}(M)$.

Theorem 1.3. Let $i \ge 0$ be an integer. Then

- (i) $\operatorname{Psupp}_{R}^{i}(M) \setminus \bigcup_{j=0}^{i-1} \operatorname{Psupp}_{R}^{j}(M) = \{ \mathfrak{p} \in \operatorname{Supp}(M) | \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i \}.$
- (ii) If $H^i_{\mathfrak{m}}(M)$ satisfies the property (*), then

$$\operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)) \setminus \bigcup_{j=0}^{i-1} \operatorname{Psupp}_{R}^{j}(M) = \{\mathfrak{p} \in \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)) | \operatorname{depth} M_{\mathfrak{p}} + \dim R/\mathfrak{p} = i\}.$$

(iii) If $H^j_{\mathfrak{m}}(M)$ satisfies the property (*) for all $j \leq i$, then

$$\min \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)) \setminus \bigcup_{j=0}^{i-1} \operatorname{Var}(\operatorname{Ann}_{R}H^{j}_{\mathfrak{m}}(M)) \\ = \min \{\mathfrak{p} \in \operatorname{Supp}(M) \mid \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i\}.$$

The formula in Theorem 1.3(iii) is known if R is a quotient of a Gorenstein local ring (cf. [2, 11.3.12]). Here we show that this formula is still valid under the weaker assumption that $H^j_{\mathfrak{m}}(M)$ satisfies the property (*) for all $j \leq i$.

This paper is divided into three sections. In the next section we present some preliminaries on the pseudo supports of M, the attached primes and the property (*) for local cohomology modules. The proofs of the main results are given in the last section.

2 Preliminaries

The theory of secondary representation for Artinian modules was introduced by Macdonald [8]. Let A be an Artinian R-module. Then A has a minimal secondary representation $A = A_1 + \cdots + A_n$, where A_i is \mathfrak{p}_i -secondary. The set $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$ is independent of the choice of the minimal secondary representation of A. This

set is called the set of attached prime ideals of A, and denoted by $\operatorname{Att}_R(A)$. Note that $A \neq 0$ if and only if $\operatorname{Att}_R(A) \neq \emptyset$. Moreover, A has the natural structure as an \widehat{R} -module. With this structure, a subset of A is an R-submodule of A if and only if it is an \widehat{R} -submodule. Therefore, A is an Artinian \widehat{R} -module. The following properties for attached primes of Artinian modules can be found in [8] and [2, 8.2.5].

Lemma 2.1. Let A be an Artinian R-module. Then we have:

(i) $\min \operatorname{Att}_R(A) = \min \operatorname{Var}(\operatorname{Ann}_R A).$

(ii) $\operatorname{Att}_R(A) = \{ \widehat{\mathfrak{p}} \cap R \mid \widehat{\mathfrak{p}} \in \operatorname{Att}_{\widehat{R}}(A) \}.$

Note that the role of $\operatorname{Psupp}_{R}^{i}(M)$ for the Artinian *R*-module $A = H^{i}_{\mathfrak{m}}(M)$ is in some sense similar to that of $\operatorname{Supp}(L)$ for a finitely generated *R*-module *L* (cf. [3] and [10]). However, although we always have $\operatorname{Supp}(L) = \operatorname{Var}(\operatorname{Ann}_{R}L)$, the analogous equality $\operatorname{Psupp}_{R}^{i}(M) = \operatorname{Var}(\operatorname{Ann}_{R}H^{i}_{\mathfrak{m}}(M))$ is not valid in general. The following connection between these sets in the general case is given in [6, 9]:

Lemma 2.2. Let $i \ge 0$ be an integer. Then $\operatorname{Psupp}^{i}_{R}(M) \subseteq \operatorname{Var}(\operatorname{Ann}_{R}H^{i}_{\mathfrak{m}}(M))$.

Lemma 2.3. [4, 9] The following statements are true:

- (i) $H^d_{\mathfrak{m}}(M)$ satisfies the property (*) if and only if the ring $R/\operatorname{Ann}_R H^d_{\mathfrak{m}}(M)$ is catenary.
- (ii) For each integer $i \ge 0$, $H^i_{\mathfrak{m}}(M)$ satisfies the property (*) if and only if $\operatorname{Psupp}^i(M) = \operatorname{Var}(\operatorname{Ann}_R H^i_{\mathfrak{m}}(M)).$
- (iii) If the ring $R/\operatorname{Ann}_R M$ is universally catenary and all its formal fibres are Cohen-Macaulay, then $H^i_{\mathfrak{m}}(M)$ satisfies the property (*) for all *i*.
- (iv) If $H^i_{\mathfrak{m}}(M)$ satisfies the property (*) for all i < d, then R/\mathfrak{p} is unmixed (i.e., $\dim \widehat{R}/\widehat{\mathfrak{p}} = \dim R/\mathfrak{p}$ for all $\widehat{\mathfrak{p}} \in \operatorname{Ass}(\widehat{R}/\mathfrak{p}\widehat{R})$) for all $\mathfrak{p} \in \operatorname{Ass}_R(M)$, and the ring $R/\operatorname{Ann}_R M$ is universally catenary.

3 Main Results

Lemma 3.1. Let $i \ge 0$ be an integer. If the ring $R/\operatorname{Ann}_{\mathbb{H}}H^i_{\mathfrak{m}}(M)$ is catenary, then

$$\operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}) \supseteq \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Psupp}_{R}^{i}(M), \, \mathfrak{q} \subseteq \mathfrak{p}\}$$

for all $\mathfrak{p} \in \operatorname{Spec}(R)$. The equality holds true if the ring $R/\operatorname{Ann}_R M$ is catenary.

Proof. Assume that $R/\operatorname{Ann}_R H^i_{\mathfrak{m}}(M)$ is catenary. Let $\mathfrak{p} \in \operatorname{Spec}(R)$. If $\mathfrak{q} \subseteq \mathfrak{p}$ and $\mathfrak{q} \in \operatorname{Psupp}^i_R(M)$, then by Lemma 2.2, we have $\mathfrak{q} \in \operatorname{Var}(\operatorname{Ann}_R H^i_{\mathfrak{m}}(M))$. So

$$\mathfrak{p} \supseteq \mathfrak{q} \supseteq \operatorname{Ann}_R H^i_\mathfrak{m}(M).$$

Since $R/\operatorname{Ann}_R H^i_{\mathfrak{m}}(M)$ is catenary, we have

$$(i - \dim R/\mathfrak{p}) - \dim R_\mathfrak{p}/\mathfrak{q}R_\mathfrak{p}$$

= $(i - \dim R/\mathfrak{p}) - \operatorname{ht} \mathfrak{p}/\mathfrak{q}$
= $(i - \dim R/\mathfrak{p}) - (\dim R/\mathfrak{q} - \dim R/\mathfrak{p})$
= $i - \dim R/\mathfrak{q}$.

Hence.

$$\begin{split} \mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}) \\ \Longleftrightarrow H_{\mathfrak{q}R_{\mathfrak{q}}}^{(i-\dim R/\mathfrak{p})-\dim R_{\mathfrak{p}}/\mathfrak{q}R_{\mathfrak{p}}}(M_{\mathfrak{q}}) \neq 0 \\ \Longleftrightarrow H_{\mathfrak{q}R_{\mathfrak{q}}}^{i-\dim R/\mathfrak{q}}(M_{\mathfrak{q}}) \neq 0 \\ \iff \mathfrak{q} \in \operatorname{Psupp}_{R}^{i}(M). \end{split}$$

Assume that $R/\operatorname{Ann}_R M$ is catenary. If $\mathfrak{q}R_\mathfrak{p} \in \operatorname{Psupp}_{R_\mathfrak{p}}^{i-\dim R/\mathfrak{p}}(M_\mathfrak{p})$, then

$$H^{(i-\dim R/\mathfrak{p})-\operatorname{ht}\mathfrak{p}/\mathfrak{q}}_{\mathfrak{q}R_\mathfrak{q}}(M_\mathfrak{q})\neq 0$$

since $(M_{\mathfrak{p}})_{\mathfrak{q}R_{\mathfrak{p}}} \cong M_{\mathfrak{q}}$. It follows that $\mathfrak{q} \in \operatorname{Psupp}_{R}^{i+\dim R/\mathfrak{q}-\dim R/\mathfrak{p}-\operatorname{ht}\mathfrak{p}/\mathfrak{q}}(M)$. Hence, by Lemma 2.2,

$$\mathfrak{p} \supseteq \mathfrak{q} \supseteq \operatorname{Ann}_{R} H^{i+\dim R/\mathfrak{q}-\dim R/\mathfrak{p}-\operatorname{ht}\mathfrak{p}/\mathfrak{q}}_{\mathfrak{m}}(M) \supseteq \operatorname{Ann}_{R} M$$

Similar to the first case, we have

$$\operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Psupp}_{R}^{i}(M), \, \mathfrak{q} \subseteq \mathfrak{p}\}$$

for all $\mathfrak{p} \in \operatorname{Spec}(R)$ and all *i*.

Note that the hypothesis of catenaricity of the ring $R/\text{Ann}_{R}M$ in Lemma 3.1 cannot be omitted. For example, let (R, \mathfrak{m}) be a non-catenary Noetherian local domain of dimension 3 (such a domain exists, cf. [1]). Then there exists $\mathfrak{p} \in \operatorname{Spec}(R)$ such that dim R/\mathfrak{p} + ht $\mathfrak{p} = 2$. So dim $R/\mathfrak{p} = ht \mathfrak{p} = 1$. Let $\mathfrak{q} = 0$. We can show that $\mathfrak{q}R_\mathfrak{p} \in \operatorname{Psupp}_{R_\mathfrak{p}}^{2-\dim R/\mathfrak{p}}(R_\mathfrak{p})$ but $\mathfrak{q} \notin \operatorname{Psupp}_R^2(R)$.

Proposition 3.2. Let $i \geq 0$ be an integer. Assume that $R/\operatorname{Ann}_R H^i_{\mathfrak{m}}(M)$ is catenary. Then the following statements are equivalent:

- (i) $H^i_{\mathfrak{m}}(M)$ satisfies the property (*). (ii) $H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_\mathfrak{p}}(M_\mathfrak{p})$ satisfies the property (*) for all $\mathfrak{p} \in \operatorname{Supp}(M)$.
- (iii) $\operatorname{Psupp}_{R}^{i}(M) = \{ \widehat{\mathfrak{p}} \cap R \, | \, \widehat{\mathfrak{p}} \in \operatorname{Psupp}_{\widehat{R}}^{i}(\widehat{M}) \}.$

Proof. (i) \Rightarrow (ii) Let $\mathfrak{p} \in \text{Supp}(M)$. By Lemma 2.3(ii), it is enough to prove

$$\operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}) = \operatorname{Var}(\operatorname{Ann}_{R_{\mathfrak{p}}}H_{\mathfrak{p}R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})).$$

By Lemma 2.2, we have $\operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}) \subseteq \operatorname{Var}(\operatorname{Ann}_{R_{\mathfrak{p}}}H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}))$. Conversely, let $\mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Var}(\operatorname{Ann}_{R_{\mathfrak{p}}}H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}))$. Then by Lemma 2.1(i), there exists $\mathfrak{q}'R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}))$ such that $\mathfrak{q}R_{\mathfrak{p}} \supseteq \mathfrak{q}'R_{\mathfrak{p}}$. So $\mathfrak{q} \supseteq \mathfrak{q}' \in \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M))$ by the weak general shifted localization principle. Since $H^i_{\mathfrak{m}}(M)$ satisfies the property (*), it follows by Lemma 2.3(ii) that

$$\mathfrak{q} \in \operatorname{Var}(\operatorname{Ann}_R H^i_{\mathfrak{m}}(M)) = \operatorname{Psupp}^i_R(M).$$

 \Box

So we have $\mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})$ by Lemma 3.1.

(ii) \Rightarrow (i) It is trivial.

(i) \Rightarrow (iii) If $\mathfrak{p} \in \operatorname{Psupp}_{R}^{i}(M)$, then $H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_\mathfrak{p}}(M_\mathfrak{p}) \neq 0$. Let $\widehat{\mathfrak{p}} \in \operatorname{Ass}(\widehat{R}/\mathfrak{p}\widehat{R})$ be such that $\dim \widehat{R}/\widehat{\mathfrak{p}} = \dim R/\mathfrak{p}$. We have $\widehat{\mathfrak{p}} \cap R = \mathfrak{p}$ and the natural homomorphism $R_\mathfrak{p} \to \widehat{R}_{\widehat{\mathfrak{p}}}$ is faithfully flat. Hence, by the flat base change theorem [2, 4.3.2],

$$H^{i-\dim\widehat{R}/\widehat{\mathfrak{p}}}_{\widehat{\mathfrak{p}}\widehat{R}_{\widehat{\mathfrak{p}}}}(\widehat{M}_{\widehat{\mathfrak{p}}}) \cong H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \otimes \widehat{R}_{\widehat{\mathfrak{p}}} \neq 0.$$

So $\widehat{\mathfrak{p}} \in \operatorname{Psupp}^{i}_{\widehat{R}}(\widehat{M})$. Therefore, $\operatorname{Psupp}^{i}_{R}(M) \subseteq \{\widehat{\mathfrak{p}} \cap R \mid \widehat{\mathfrak{p}} \in \operatorname{Psupp}^{i}_{\widehat{R}}(\widehat{M})\}$.

Conversely, let $\widehat{\mathfrak{p}} \in \operatorname{Psupp}_{\widehat{R}}^{i}(\widehat{M})$. Since $\operatorname{Psupp}_{\widehat{R}}^{i}(\widehat{M}) = \operatorname{Var}(\operatorname{Ann}_{\widehat{R}}H^{i}_{\mathfrak{m}}(M))$, by Lemma 2.1(i), there exists $\widehat{\mathfrak{q}} \in \operatorname{min}\operatorname{Att}_{\widehat{R}}(H^{i}_{\mathfrak{m}}(M))$ such that $\widehat{\mathfrak{p}} \supseteq \widehat{\mathfrak{q}}$. So $\widehat{\mathfrak{p}} \cap R \supseteq \widehat{\mathfrak{q}} \cap R \in \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M))$ by Lemma 2.1(ii). Therefore, $\widehat{\mathfrak{p}} \cap R \in \operatorname{Var}(\operatorname{Ann}_{R}H^{i}_{\mathfrak{m}}(M)) = \operatorname{Psupp}_{R}^{i}(M)$ by Lemma 2.3(ii).

(iii) \Rightarrow (i) By Lemmas 2.3(ii) and 2.2, it is enough to prove

 $\operatorname{Var}(\operatorname{Ann}_{R}H^{i}_{\mathfrak{m}}(M)) \subseteq \operatorname{Psupp}^{i}_{R}(M).$

Let $\mathfrak{p} \in \operatorname{Var}(\operatorname{Ann}_R H^i_{\mathfrak{m}}(M))$. There exists $\mathfrak{q} \in \min \operatorname{Att}_R(H^i_{\mathfrak{m}}(M))$ with $\mathfrak{p} \supseteq \mathfrak{q}$ by Lemma 2.1(i). By Lemma 2.1(ii), there exists $\widehat{\mathfrak{q}} \in \operatorname{Att}_{\widehat{R}}(H^i_{\mathfrak{m}}(M))$ such that $\widehat{\mathfrak{q}} \cap R$ $= \mathfrak{q}$. Since $\operatorname{Psupp}^i_{\widehat{R}}(\widehat{M}) = \operatorname{Var}(\operatorname{Ann}_{\widehat{R}} H^i_{\mathfrak{m}}(M))$, it holds $\widehat{\mathfrak{q}} \in \operatorname{Psupp}^i_{\widehat{R}}(\widehat{M})$. So by the hypothesis, we have $\mathfrak{q} \in \operatorname{Psupp}^i_R(M)$. Since $R/\operatorname{Ann}_R H^i_{\mathfrak{m}}(M)$ is catenary, similar to the proof of [3, Lemma 2.2], $\operatorname{Psupp}^i_R(M)$ is closed under specialization. Therefore, $\mathfrak{p} \in \operatorname{Psupp}^i_R(M)$.

Proof of Theorem 1.1. (i) \Rightarrow (iii) By Lemmas 2.3(ii) and 2.2, it is enough to prove

$$\operatorname{Var}(\operatorname{Ann}_{R}H^{d}_{\mathfrak{m}}(M)) \subseteq \operatorname{Psupp}^{d}_{R}(M).$$

Let $\mathfrak{p} \in \operatorname{Var}(\operatorname{Ann}_R H^d_{\mathfrak{m}}(M))$. So $\mathfrak{p} \supseteq \mathfrak{q} \in \min \operatorname{Ann}_R H^d_{\mathfrak{m}}(M)$. Thus, $\mathfrak{q} \in \operatorname{Att}_R(H^d_{\mathfrak{m}}(M))$ by Lemma 2.1(i). Then by hypothesis, $\mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}(H^{d-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}))$. It follows that $H^{d-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0$. Therefore, $\mathfrak{p} \in \operatorname{Psupp}^d_R(M)$.

 $(iii) \Leftrightarrow (ii)$ By Lemma 2.3(i).

(ii) \Rightarrow (i) Let $\mathfrak{p} \in \operatorname{Spec}(R)$. We need to prove

$$\operatorname{Att}_{R_{\mathfrak{p}}}(H^{d-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Att}_{R}(H^{d}_{\mathfrak{m}}(M)), \, \mathfrak{q} \subseteq \mathfrak{p}\}$$

By [2, 11.3.8], it is enough to prove

$$\operatorname{Att}_{R_{\mathfrak{p}}}(H^{d-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) \supseteq \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \operatorname{Att}_{R}(H^{d}_{\mathfrak{m}}(M)), \, \mathfrak{q} \subseteq \mathfrak{p}\}.$$

Let $\mathfrak{q} \subseteq \mathfrak{p}$ and $\mathfrak{q} \in \operatorname{Att}_R(H^d_\mathfrak{m}(M))$. By [2, 7.3.2], $\mathfrak{q} \in \operatorname{Ass}_R(M)$ and dim $R/\mathfrak{q} = d$. It follows that $\mathfrak{q}R_\mathfrak{p} \in \operatorname{Ass}_{R_\mathfrak{p}}(M_\mathfrak{p})$. Since $R/\operatorname{Ann}_RH^d_\mathfrak{m}(M)$ is catenary,

$$\dim R_{\mathfrak{p}}/\mathfrak{q}R_{\mathfrak{p}} = \operatorname{ht} \mathfrak{p}/\mathfrak{q} = \dim R/\mathfrak{q} - \dim R/\mathfrak{p} = d - \dim R/\mathfrak{p}$$

676

Attached Primes and Shifted Localization Principle

It follows by [2, 11.3.9] that $\mathfrak{q}R_{\mathfrak{p}} \in \operatorname{Att}_{R_{\mathfrak{p}}}(H^{d-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})).$ (iii) \Leftrightarrow (v) By Proposition 3.2. (iv) \Leftrightarrow (v) Similar to (i) \Leftrightarrow (iii).

Proof of Theorem 1.2. (i) Assume that $R/\text{Ann}_R M$ is catenary.

(a) \Rightarrow (b) Similar to the proof of (i) \Rightarrow (iii) of Theorem 1.1.

(b) \Rightarrow (a) Let $\mathfrak{q}R_{\mathfrak{p}} \in \min \operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}))$. Since $H^{i}_{\mathfrak{m}}(M)$ satisfies the property (*), so does $H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})$ by Proposition 3.2. Hence, by Lemma 2.3(ii),

$$\operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}) = \operatorname{Var}(\operatorname{Ann}_{R_{\mathfrak{p}}}H_{\mathfrak{p}R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})).$$

So $\mathfrak{q}R_{\mathfrak{p}} \in \min \operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})$ by Lemma 2.1(i). By the weak general shifted localization principle, $\mathfrak{q} \in \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M))$. Let $\mathfrak{q}_{1} \in \min \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M))$ be such that $\mathfrak{q} \supseteq \mathfrak{q}_{1}$. Since $H^{i}_{\mathfrak{m}}(M)$ satisfies the property (*), $\operatorname{Psupp}_{R}^{i}(M) = \operatorname{Var}(\operatorname{Ann}_{R}H^{i}_{\mathfrak{m}}(M))$ by Lemma 2.3(ii). So $\mathfrak{q}_{1} \in \operatorname{Psupp}_{R}^{i}(M)$. By Lemma 3.1, $\mathfrak{q}_{1}R_{\mathfrak{p}} \in \operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})$. Since $\mathfrak{q}R_{\mathfrak{p}} \supseteq \mathfrak{q}_{1}R_{\mathfrak{p}}$, we get by the minimality of $\mathfrak{q}R_{\mathfrak{p}}$ that $\mathfrak{q} = \mathfrak{q}_{1}$. Therefore,

$$\min \operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) \subseteq \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \min \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)), \mathfrak{q} \subseteq \mathfrak{p}\}.$$

Conversely, let $\mathfrak{q} \subseteq \mathfrak{p}$ such that $\mathfrak{q} \in \min \operatorname{Att}_R(H^i_\mathfrak{m}(M))$. Then by Lemma 2.1(i), $\mathfrak{q} \in \min \operatorname{Var}(\operatorname{Ann}_R H^i_\mathfrak{m}(M))$ and hence $\mathfrak{q} \in \min \operatorname{Psupp}_R^i(M)$ by Lemma 2.3(ii). By Lemma 3.1, we get $\mathfrak{q}_{R_\mathfrak{p}} \in \operatorname{Psupp}_{R_\mathfrak{p}}^{i-\dim R/\mathfrak{p}}(M_\mathfrak{p})$. Assume

$$\mathfrak{q}R_{\mathfrak{p}} \supseteq \mathfrak{q}_1 R_{\mathfrak{p}} \in \min \operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}).$$

Then $\mathfrak{q} \supseteq \mathfrak{q}_1$ and $\mathfrak{q}_1 \in \operatorname{Psupp}^i_R(M)$ by Lemma 3.1. The minimality of \mathfrak{q} implies $\mathfrak{q} = \mathfrak{q}_1$. Therefore,

$$\mathfrak{q}R_{\mathfrak{p}} = \mathfrak{q}_1 R_{\mathfrak{p}} \in \min \operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}).$$

By Proposition 3.2, $H_{\mathfrak{p}R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}})$ satisfies the property (*), hence by Lemmas 2.1(i) and 2.3(ii), we have

$$\mathfrak{q}R_{\mathfrak{p}} \in \min \operatorname{Psupp}_{R_{\mathfrak{p}}}^{i-\dim R/\mathfrak{p}}(M_{\mathfrak{p}}) = \min \operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})).$$

(b) \Leftrightarrow (c) By Proposition 3.2.

(ii) It is obvious that if $H^i_{\mathfrak{m}}(M)$ satisfies the shifted localization principle, then (c) holds true. On the other hand, we always have (c) \Rightarrow (a). Therefore, the statement (ii) is proved.

It follows by Theorem 1.2(ii) and Lemma 2.3(iv) that if $H^i_{\mathfrak{m}}(M)$ satisfies the shifted localization principle for all i, then $R/\operatorname{Ann}_R M$ is universally catenary and R/\mathfrak{p} is unmixed for all $\mathfrak{p} \in \operatorname{Ass}_R(M)$. Furthermore, by Lemma 2.3(iii) and Theorem 1.2(i), if (R, \mathfrak{m}) is universally catenary and all its formal fibres are Cohen-Macaulay,

T.N. An

then $\min \operatorname{Att}_{R_{\mathfrak{p}}}(H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})) = \{\mathfrak{q}R_{\mathfrak{p}} \mid \mathfrak{q} \in \min \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)), \mathfrak{q} \subseteq \mathfrak{p}\}$ for all i and all $\mathfrak{p} \in \operatorname{Spec}(R)$.

Proof of Theorem 1.3. (i) Let $\mathfrak{p} \in \operatorname{Psupp}_{R}^{i}(M) \setminus \bigcup_{j=0}^{i-1} \operatorname{Psupp}_{R}^{j}(M)$. Then we have $H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0$ since $\mathfrak{p} \in \operatorname{Psupp}_{R}^{i}(M)$. Therefore, $\mathfrak{p} \in \operatorname{Supp}(M)$ and depth $M_{\mathfrak{p}} \leq i - \dim R/\mathfrak{p}$. Assume

 $\operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = j < i.$

Since depth $M_{\mathfrak{p}} = j - \dim R/\mathfrak{p}$, it holds $H^{j-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0$. So $\mathfrak{p} \in \operatorname{Psupp}_{R}^{j}(M)$. This is a contradiction to the hypothesis. Therefore,

$$\operatorname{Psupp}_{R}^{i}(M) \setminus \bigcup_{j=0}^{i-1} \operatorname{Psupp}_{R}^{j}(M) \subseteq \{\mathfrak{p} \in \operatorname{Supp}(M) \mid \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i\}.$$

Conversely, let $\mathfrak{p} \in \operatorname{Supp}(M)$ be such that depth $M_{\mathfrak{p}} + \dim R/\mathfrak{p} = i$. Hence, $H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0$. We have $\mathfrak{p} \in \operatorname{Psupp}_{R}^{i}(M)$. Assume that there exists j such that $0 \leq j < i$ and $\mathfrak{p} \in \operatorname{Psupp}_{R}^{j}(M)$. Then $H^{j-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) \neq 0$. It follows that

$$\operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} \le j < i.$$

This is impossible. So

$$\{\mathfrak{p} \in \operatorname{Supp}(M) | \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i\} \subseteq \operatorname{Psupp}_{R}^{i}(M) \setminus \bigcup_{i=0}^{i-1} \operatorname{Psupp}_{R}^{j}(M).$$

(ii) Since $H^i_{\mathfrak{m}}(M)$ satisfies the property (*), $\operatorname{Psupp}^i_R(M) = \operatorname{Var}(\operatorname{Ann}_R H^i_{\mathfrak{m}}(M))$ by Lemma 2.3(ii). So the proof follows from (i).

(iii) Since $H^j_{\mathfrak{m}}(M)$ satisfies the property (*) for all $j \leq i$, we have $\operatorname{Psupp}_R^j(M) = \operatorname{Var}(\operatorname{Ann}_R H^j_{\mathfrak{m}}(M))$ for all $j \leq i$ by Lemma 2.3(ii). Let

$$\mathfrak{p} \in \min \operatorname{Att}_R(H^i_{\mathfrak{m}}(M)) \setminus \bigcup_{j=0}^{i-1} \operatorname{Var}(\operatorname{Ann}_R H^i_{\mathfrak{m}}(M))$$

By (i), we have

$$\mathfrak{p} \in \operatorname{Psupp}_{R}^{i}(M) \setminus \bigcup_{j=0}^{i-1} \operatorname{Psupp}_{R}^{j}(M) = \{\mathfrak{p} \in \operatorname{Supp}(M) \mid \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i\}.$$

Assume $\mathfrak{p} \supseteq \mathfrak{q} \in \min\{\mathfrak{p} \in \operatorname{Supp}(M) | \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i\}$. By (i), we have $\mathfrak{q} \in \operatorname{Psupp}_{R}^{i}(M)$. On the other hand, $\mathfrak{p} \in \min \operatorname{Att}_{R}(H^{i}_{\mathfrak{m}}(M)) = \min \operatorname{Psupp}_{R}^{i}(M)$. Therefore,

$$\mathfrak{p} = \mathfrak{q} \in \min\{\mathfrak{p} \in \operatorname{Supp}(M) \,|\, \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i\}.$$

Conversely, let $\mathfrak{p} \in \min\{\mathfrak{p} \in \operatorname{Supp}(M) | \operatorname{depth} M_{\mathfrak{p}} + \operatorname{dim} R/\mathfrak{p} = i\}$. Then by (i) and by the hypothesis,

$$\mathfrak{p} \in \operatorname{Psupp}_{R}^{i}(M) \setminus \bigcup_{j=0}^{i-1} \operatorname{Psupp}_{R}^{j}(M) = \operatorname{Psupp}_{R}^{i}(M) \setminus \bigcup_{j=0}^{i-1} \operatorname{Var}(\operatorname{Ann}_{R} H^{j}_{\mathfrak{m}}(M))$$

There exists $\mathfrak{q} \in \min \operatorname{Psupp}_R^i(M)$ with $\mathfrak{p} \supseteq \mathfrak{q}$. It is obvious that

$$\mathfrak{q} \notin \bigcup_{j=0}^{i-1} \operatorname{Var}(\operatorname{Ann}_R H^j_\mathfrak{m}(M)) = \bigcup_{j=0}^{i-1} \operatorname{Psupp}_R^j(M).$$

Since $H^i_{\mathfrak{m}}(M)$ satisfies the property (*), by Lemmas 2.3(ii) and 2.1, we have

$$\mathfrak{q} \in \min \operatorname{Psupp}_{R}^{i}(M) = \min \operatorname{Att}_{R}(H_{\mathfrak{m}}^{i}(M)).$$

Hence, by (ii), \mathfrak{q} belongs to the set $\{\mathfrak{p} \in \operatorname{Att}_R(H^i_\mathfrak{m}(M)) | \operatorname{depth} M_\mathfrak{p} + \operatorname{dim} R/\mathfrak{p} = i\}$. Therefore, $\mathfrak{q} \in \{\mathfrak{p} \in \operatorname{Supp}(M) | \operatorname{depth} M_\mathfrak{p} + \operatorname{dim} R/\mathfrak{p} = i\}$. The minimality of \mathfrak{p} implies $\mathfrak{p} = \mathfrak{q}$.

Note that the hypothesis that $H^j_{\mathfrak{m}}(M)$ satisfies the property (*) in Theorem 1.3(ii) cannot be omitted. For example, let (R, \mathfrak{m}) be the Noetherian local domain of dimension 2 constructed by [7] such that \widehat{R} has an associated prime ideal $\widehat{\mathfrak{p}}$ of dimension 1. Then $H^1_{\mathfrak{m}}(R)$ does not satisfy the property (*) (cf. [5]) and $\operatorname{Psupp}^0_R(R) = \operatorname{Var}(\operatorname{Ann}_R H^0_{\mathfrak{m}}(R)) = \emptyset$. So 0 belongs to the left-hand side of the formula in (ii) but it does not belong to the right-hand side of this formula. This example also shows that the hypothesis that $H^j_{\mathfrak{m}}(M)$ satisfies the property (*) for all $j \leq i$ in Theorem 1.3(ii) cannot be omitted.

The formula in Theorem 1.3(iii) has a connection with Faltings' annihilator theorem. Let $\mathfrak{b} \subseteq \mathfrak{a}$ be ideals of R. In the terminology of Brodmann and Sharp [2], the \mathfrak{b} -finiteness dimension $f_{\mathfrak{a}}^{\mathfrak{b}}(M)$ of M relative to \mathfrak{a} is defined as

$$f^{\mathfrak{b}}_{\mathfrak{a}}(M) := \inf\{i \in \mathbb{N} \mid \mathfrak{b} \nsubseteq \sqrt{(0:H^{i}_{\mathfrak{a}}(M))}\}$$

and the \mathfrak{b} -minimum \mathfrak{a} -adjusted depth of M is defined as

$$\lambda_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{\operatorname{depth} M_{\mathfrak{p}} + \operatorname{ht}(\mathfrak{a} + \mathfrak{p})/\mathfrak{p} \,|\, \mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Var}(\mathfrak{b})\}.$$

If $\mathfrak{b} = \mathfrak{a}$, we write $f_{\mathfrak{a}}(M)$ instead of $f_{\mathfrak{a}}^{\mathfrak{b}}(M)$, called the finiteness dimension of M relative to \mathfrak{a} . Furthermore, we have (cf. [2, 9.1.2]):

$$f_{\mathfrak{a}}(M) = \inf\{i \in \mathbb{N} \mid H^{i}_{\mathfrak{a}}(M) \text{ is not finitely generated}\}$$
$$= \inf\{i \in \mathbb{N} \mid \mathfrak{a} \nsubseteq \sqrt{(0:H^{i}_{\mathfrak{a}}(M))} \}.$$

If R is universally catenary and all its formal fibres are Cohen-Macaulay, then the annihilator theorem holds true over R, i.e., $f_{\mathfrak{a}}^{\mathfrak{b}}(M) = \lambda_{\mathfrak{a}}^{\mathfrak{b}}(M)$ (cf. [2, 9.6.6]). Similar to [2, 11.3.13], we get the following conclusion:

Remark 3.3. Assume that $H^i_{\mathfrak{m}}(M)$ satisfies the property (*) for all *i*. Let \mathfrak{b} be an ideal of *R*. Then $f^{\mathfrak{b}}_{\mathfrak{m}}(M) = \lambda^{\mathfrak{b}}_{\mathfrak{m}}(M)$.

Acknowledgements. The author is greatly indebted to his advisors, Professor N.T. Cuong and Professor L.T. Nhan, for their suggestion and guidance during the preparation of this paper.

References

- [1] M. Brodmann, A particular class of regular domains, J. Algebra 54 (1978) 366–373.
- [2] M. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.

- [3] M. Brodmann, R.Y. Sharp, On the dimension and multiplicity of local cohomology modules, Nagoya Math. J. 167 (2002) 217–233.
- [4] N.T. Cuong, N.T. Dung, L.T. Nhan, Top local cohomology and the catenaricity of the unmixed support of a finitely generated module, *Comm. Algebra* 35 (5) (2007) 1691–1701.
- [5] N.T. Cuong, L.T. Nhan, On the Noetherian dimension of Artinian modules, Vietnam J. Math. 30 (2) (2002) 121–130.
- [6] N.T. Cuong, L.T. Nhan, N.T.K. Nga, On pseudo supports and non-Cohen-Macaulay locus of finitely generated modules, J. Algebra 323 (2010) 3029–3038.
- [7] D. Ferrand, M. Raynaud, Fibres formelles d'un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970) 295–311.
- [8] I.G. Macdonald, Secondary representation of modules over a commutative ring, in: Symposia Mathematica, Vol. 11, Academic Press, London, 1973, pp. 23–43.
- [9] L.T. Nhan, T.N. An, On the unmixedness and the universal catenaricity of local rings and local cohomology modules, J. Algebra 321 (2009) 303–311.
- [10] L.T. Nhan, T.N. An, On the catenaricity of Noetherian local rings and quasi unmixed Artinian modules, *Comm. Algebra* (to appear).
- [11] R.Y. Sharp, Some results on the vanishing of local cohomology modules, Proc. London Math. Soc. 30 (1975) 177–195.
- [12] H. Zoschinger, Uber die assoziierten primideale des bidualen, Comm. Algebra 37 (2009) 1977–1994.