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Abstract. Let (R, m) be a Noetherian local ring and M a finitely generated R-module.
For an integer i ≥ 0, the Artinian i-th local cohomology module Hi

m(M) is said to satisfy
the shifted localization principle if

AttRp(H
i−dim R/p
pRp

(Mp)) = {qRp | q ∈ AttR(Hi
m(M)), q ⊆ p}

for all p ∈ Spec(R). In this paper we study the attached primes of Hi
m(M) and give some

conditions for Hi
m(M) to satisfy the shifted localization principle.
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1 Introduction

Throughout this paper, let (R, m) be a Noetherian local ring and let M be a finitely
generated R-module with dimM = d. It is clear that

AssRp(Mp) = {qRp | q ∈ AssR(M), q ⊆ p}
for all p ∈ Spec(R). We consider the analogous formula for attached primes of the
Artinian i-th local cohomology module Hi

m(M) as follows:

AttRp(Hi−dim R/p
pRp

(Mp)) = {qRp | q ∈ AttR(Hi
m(M)), q ⊆ p}

for all p ∈ Spec(R). We say that Hi
m(M) satisfies the shifted localization principle

if this formula holds true. In general, Hi
m(M) satisfies the weak general shifted

localization principle, i.e.,

AttRp(Hi−dim R/p
pRp

(Mp)) ⊆ {qRp | q ∈ AttR(Hi
m(M)), q ⊆ p}

∗The author is supported by the Vietnam National Foundation for Science and Technology
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for all p ∈ Spec(R) (cf. [11, Theorem 4.8], see also [2, 11.3.8]). In case R is a quotient
of a Gorenstein local ring, Hi

m(M) always satisfies the shifted localization princi-
ple (cf. [11, Theorem 3.7], see also [2, 11.3.2]). However, the shifted localization
principle is not valid in general. For example, let (R, m) be the Noetherian local
domain of dimension 2 constructed by Ferrand and Raynaud [7] such that R̂ has an
associated prime ideal p̂ of dimension 1. Then H1

m(R) does not satisfy the shifted
localization principle (cf. [2, 11.3.14]). Moreover, if (R, m) is a Noetherian local
domain of dimension 1 that is not a homomorphic image of a Gorenstein local ring
(such a ring exists by [7]), then it is clear that Hi

m(M) satisfies the shifted localiza-
tion principle for any finitely generated R-module M and any integer i. Therefore,
it is natural to ask under which conditions the shifted localization principle is valid
for Hi

m(M).
The purpose of this paper is to study the attached primes of Hi

m(M) in order
to give some conditions for Hi

m(M) to satisfy the shifted localization principle.
For each ideal I of R, we denote by Var(I) the set of all prime ideals of R

containing I. Before stating the main results, we recall the following property on
an Artinian R-module A, which was considered first by Cuong and Nhan [5]:

AnnR(0 :A p) = p for all p ∈ Var(AnnRA). (∗)

If R is complete with respect to the m-adic topology, it follows by the Matlis duality
that the property (∗) is satisfied for all Artinian R-modules A. If R is universally
catenary and all its formal fibres are Cohen-Macaulay, then Hi

m(M) satisfies the
property (∗) for any integer i (cf. [9, Corollary 3.2]). However, there exists a local
cohomology module H1

m(R) that does not satisfy the property (∗) (cf. [5, Example
4.3]). It should be mentioned that if R is not complete, then the study of the
property (∗) for Hi

m(M) is important since it gives a lot of information on the
module M and the base ring R (cf. [4, 5, 9, 10, 12]). Also, the results in this paper
show that the property (∗) is closely related to the shifted localization principle.

Note that Hd
m(M) satisfies the property (∗) if and only if the ring R/AnnRHd

m(M)
is catenary (cf. [4]). Together with this fact, our first main result gives some charac-
terizations for the top local cohomology to satisfy the shifted localization principle.

Theorem 1.1. The following statements are equivalent:

(i) Hd
m(M) satisfies the shifted localization principle.

(ii) The ring R/AnnRHd
m(M) is catenary.

(iii) Hd
m(M) satisfies the property (∗).

(iv) H
d−dim R/p
pRp

(Mp) satisfies the shifted localization principle for all p ∈ Supp(M).

(v) H
d−dim R/p
pRp

(Mp) satisfies the property (∗) for all p ∈ Supp(M).

For the lower levels i < d, we show how the property (∗) is related to the
shifted localization principle for minimal attached primes and how it behaves under
localization.

Consider the following conditions:
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(a) minAttRp(Hi−dim R/p
pRp

(Mp)) = {qRp | q ∈ minAttR(Hi
m(M)), q ⊆ p} for all

p ∈ Spec(R).
(b) Hi

m(M) satisfies the property (∗).
(c) H

i−dim R/p
pRp

(Mp) satisfies the property (∗) for all p ∈ Supp(M).

Theorem 1.2. Let i ≥ 0 be an integer.
(i) If R/AnnRM is catenary, then the conditions (a), (b), (c) are equivalent.

(ii) If Hi
m(M) satisfies the shifted localization principle, then the conditions (a)

and (b) are satisfied.

Following Brodmann and Sharp [3], the i-th pseudo support of M is defined as

Psuppi
R(M) = {p ∈ Spec(R) |Hi−dim R/p

pRp
(Mp) 6= 0}.

If R is universally catenary and all its formal fibres are Cohen-Macaulay, then
Psuppi

R(M) = Var(AnnRHd
m(M)) is a closed subset of Spec(R) in the Zariski topol-

ogy, but in general Psuppi
R(M) is a proper subset of Var(AnnRHd

m(M)) and is not
closed (cf. [3] and [9]). Our last main result gives some information on the pseudo
supports of M and the attached primes of the local cohomology modules Hi

m(M).

Theorem 1.3. Let i ≥ 0 be an integer. Then

(i) Psuppi
R(M)\⋃i−1

j=0 Psuppj
R(M) = {p ∈ Supp(M) |depthMp + dimR/p = i}.

(ii) If Hi
m(M) satisfies the property (∗), then

AttR(Hi
m(M))\⋃i−1

j=0 Psuppj
R(M)

= {p ∈ AttR(Hi
m(M)) |depthMp + dimR/p = i}.

(iii) If Hj
m(M) satisfies the property (∗) for all j ≤ i, then

minAttR(Hi
m(M))\⋃i−1

j=0 Var(AnnRHj
m(M))

= min{p ∈ Supp(M) |depthMp + dimR/p = i}.

The formula in Theorem 1.3(iii) is known if R is a quotient of a Gorenstein local
ring (cf. [2, 11.3.12]). Here we show that this formula is still valid under the weaker
assumption that Hj

m(M) satisfies the property (∗) for all j ≤ i.
This paper is divided into three sections. In the next section we present some

preliminaries on the pseudo supports of M , the attached primes and the property (∗)
for local cohomology modules. The proofs of the main results are given in the last
section.

2 Preliminaries

The theory of secondary representation for Artinian modules was introduced by
Macdonald [8]. Let A be an Artinian R-module. Then A has a minimal secondary
representation A = A1 + · · · + An, where Ai is pi-secondary. The set {p1, . . . , pn}
is independent of the choice of the minimal secondary representation of A. This
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set is called the set of attached prime ideals of A, and denoted by AttR(A). Note
that A 6= 0 if and only if AttR(A) 6= ∅. Moreover, A has the natural structure as
an R̂-module. With this structure, a subset of A is an R-submodule of A if and
only if it is an R̂-submodule. Therefore, A is an Artinian R̂-module. The following
properties for attached primes of Artinian modules can be found in [8] and [2, 8.2.5].

Lemma 2.1. Let A be an Artinian R-module. Then we have:
(i) minAttR(A) = min Var(AnnRA).
(ii) AttR(A) = { p̂ ∩R | p̂ ∈ AttR̂(A)}.

Note that the role of Psuppi
R(M) for the Artinian R-module A = Hi

m(M) is in
some sense similar to that of Supp(L) for a finitely generated R-module L (cf. [3] and
[10]). However, although we always have Supp(L) = Var(AnnRL), the analogous
equality Psuppi

R(M) = Var(AnnRHi
m(M)) is not valid in general. The following

connection between these sets in the general case is given in [6, 9]:

Lemma 2.2. Let i ≥ 0 be an integer. Then Psuppi
R(M) ⊆ Var(AnnRHi

m(M)).

Lemma 2.3. [4, 9] The following statements are true:
(i) Hd

m(M) satisfies the property (∗) if and only if the ring R/AnnRHd
m(M) is

catenary.

(ii) For each integer i ≥ 0, Hi
m(M) satisfies the property (∗) if and only if

Psuppi(M) = Var(AnnRHi
m(M)).

(iii) If the ring R/AnnRM is universally catenary and all its formal fibres are
Cohen-Macaulay, then Hi

m(M) satisfies the property (∗) for all i.

(iv) If Hi
m(M) satisfies the property (∗) for all i < d, then R/p is unmixed (i.e.,

dim R̂/p̂ = dim R/p for all p̂ ∈ Ass(R̂/pR̂)) for all p ∈ AssR(M), and the ring
R/AnnRM is universally catenary.

3 Main Results

Lemma 3.1. Let i ≥ 0 be an integer. If the ring R/AnnRHi
m(M) is catenary, then

Psuppi−dim R/p
Rp

(Mp) ⊇ {qRp | q ∈ Psuppi
R(M), q ⊆ p}

for all p ∈ Spec(R). The equality holds true if the ring R/AnnRM is catenary.

Proof. Assume that R/AnnRHi
m(M) is catenary. Let p ∈ Spec(R). If q ⊆ p and

q ∈ Psuppi
R(M), then by Lemma 2.2, we have q ∈ Var(AnnRHi

m(M)). So

p ⊇ q ⊇ AnnRHi
m(M).

Since R/AnnRHi
m(M) is catenary, we have

(i− dimR/p)− dimRp/qRp

= (i− dimR/p)− ht p/q

= (i− dimR/p)− (dimR/q− dimR/p)
= i− dimR/q.
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Hence,
qRp ∈ Psuppi−dim R/p

Rp
(Mp)

⇐⇒ H
(i−dim R/p)−dim Rp/qRp

qRq
(Mq) 6= 0

⇐⇒ H
i−dim R/q
qRq

(Mq) 6= 0

⇐⇒ q ∈ Psuppi
R(M).

Assume that R/AnnRM is catenary. If qRp ∈ Psuppi−dim R/p
Rp

(Mp), then

H
(i−dim R/p)−ht p/q
qRq

(Mq) 6= 0

since (Mp)qRp
∼= Mq. It follows that q ∈ Psuppi+dim R/q−dim R/p−ht p/q

R (M). Hence,
by Lemma 2.2,

p ⊇ q ⊇ AnnRH
i+dim R/q−dim R/p−ht p/q
m (M) ⊇ AnnRM.

Similar to the first case, we have

Psuppi−dim R/p
Rp

(Mp) = {qRp | q ∈ Psuppi
R(M), q ⊆ p}

for all p ∈ Spec(R) and all i. ¤

Note that the hypothesis of catenaricity of the ring R/AnnRM in Lemma 3.1
cannot be omitted. For example, let (R, m) be a non-catenary Noetherian local
domain of dimension 3 (such a domain exists, cf. [1]). Then there exists p ∈ Spec(R)
such that dimR/p+ht p = 2. So dimR/p = ht p = 1. Let q = 0. We can show that
qRp ∈ Psupp2−dim R/p

Rp
(Rp) but q /∈ Psupp2

R(R).

Proposition 3.2. Let i ≥ 0 be an integer. Assume that R/AnnRHi
m(M) is cate-

nary. Then the following statements are equivalent:

(i) Hi
m(M) satisfies the property (∗).

(ii) H
i−dim R/p
pRp

(Mp) satisfies the property (∗) for all p ∈ Supp(M).

(iii) Psuppi
R(M) = { p̂ ∩R | p̂ ∈ Psuppi

R̂
(M̂)}.

Proof. (i)⇒(ii) Let p ∈ Supp(M). By Lemma 2.3(ii), it is enough to prove

Psuppi−dim R/p
Rp

(Mp) = Var(AnnRpH
i−dim R/p
pRp

(Mp)).

By Lemma 2.2, we have Psuppi−dim R/p
Rp

(Mp) ⊆ Var(AnnRpH
i−dim R/p
pRp

(Mp)). Con-

versely, let qRp ∈ Var(AnnRpH
i−dim R/p
pRp

(Mp)). Then by Lemma 2.1(i), there exists

q′Rp ∈ AttRp(Hi−dim R/p
pRp

(Mp)) such that qRp ⊇ q′Rp. So q ⊇ q′ ∈ AttR(Hi
m(M))

by the weak general shifted localization principle. Since Hi
m(M) satisfies the prop-

erty (∗), it follows by Lemma 2.3(ii) that

q ∈ Var(AnnRHi
m(M)) = Psuppi

R(M).



676 T.N. An

So we have qRp ∈ Psuppi−dim R/p
Rp

(Mp) by Lemma 3.1.
(ii)⇒(i) It is trivial.
(i)⇒(iii) If p ∈ Psuppi

R(M), then H
i−dim R/p
pRp

(Mp) 6= 0. Let p̂ ∈ Ass(R̂/pR̂) be

such that dim R̂/p̂ = dim R/p. We have p̂ ∩R = p and the natural homomorphism
Rp → R̂p̂ is faithfully flat. Hence, by the flat base change theorem [2, 4.3.2],

H
i−dim R̂/p̂

p̂R̂p̂

(M̂p̂) ∼= H
i−dim R/p
pRp

(Mp)⊗ R̂p̂ 6= 0.

So p̂ ∈ Psuppi
R̂
(M̂). Therefore, Psuppi

R(M) ⊆ { p̂ ∩R | p̂ ∈ Psuppi
R̂
(M̂)}.

Conversely, let p̂ ∈ Psuppi
R̂
(M̂). Since Psuppi

R̂
(M̂) = Var(AnnR̂Hi

m(M)), by
Lemma 2.1(i), there exists q̂ ∈ minAttR̂(Hi

m(M)) such that p̂ ⊇ q̂. So p̂ ∩ R ⊇
q̂ ∩R ∈ AttR(Hi

m(M)) by Lemma 2.1(ii). Therefore, p̂ ∩R ∈ Var(AnnRHi
m(M)) =

Psuppi
R(M) by Lemma 2.3(ii).

(iii)⇒(i) By Lemmas 2.3(ii) and 2.2, it is enough to prove

Var(AnnRHi
m(M)) ⊆ Psuppi

R(M).

Let p ∈ Var(AnnRHi
m(M)). There exists q ∈ minAttR(Hi

m(M)) with p ⊇ q by
Lemma 2.1(i). By Lemma 2.1(ii), there exists q̂ ∈ AttR̂(Hi

m(M)) such that q̂ ∩ R

= q. Since Psuppi
R̂
(M̂) = Var(AnnR̂Hi

m(M)), it holds q̂ ∈ Psuppi
R̂
(M̂). So by the

hypothesis, we have q ∈ Psuppi
R(M). Since R/AnnRHi

m(M) is catenary, similar to
the proof of [3, Lemma 2.2], Psuppi

R(M) is closed under specialization. Therefore,
p ∈ Psuppi

R(M). ¤

Proof of Theorem 1.1. (i)⇒(iii) By Lemmas 2.3(ii) and 2.2, it is enough to prove

Var(AnnRHd
m(M)) ⊆ Psuppd

R(M).

Let p ∈ Var(AnnRHd
m(M)). So p ⊇ q ∈ minAnnRHd

m(M). Thus, q ∈ AttR(Hd
m(M))

by Lemma 2.1(i). Then by hypothesis, qRp ∈ AttRp(Hd−dim R/p
pRp

(Mp)). It follows

that H
d−dim R/p
pRp

(Mp) 6= 0. Therefore, p ∈ Psuppd
R(M).

(iii)⇔(ii) By Lemma 2.3(i).
(ii)⇒(i) Let p ∈ Spec(R). We need to prove

AttRp(Hd−dim R/p
pRp

(Mp)) = {qRp | q ∈ AttR(Hd
m(M)), q ⊆ p}.

By [2, 11.3.8], it is enough to prove

AttRp(Hd−dim R/p
pRp

(Mp)) ⊇ {qRp | q ∈ AttR(Hd
m(M)), q ⊆ p}.

Let q ⊆ p and q ∈ AttR(Hd
m(M)). By [2, 7.3.2], q ∈ AssR(M) and dimR/q = d. It

follows that qRp ∈ AssRp(Mp). Since R/AnnRHd
m(M) is catenary,

dimRp/qRp = ht p/q = dim R/q− dimR/p = d− dimR/p.
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It follows by [2, 11.3.9] that qRp ∈ AttRp(Hd−dim R/p
pRp

(Mp)).
(iii)⇔(v) By Proposition 3.2.
(iv)⇔(v) Similar to (i)⇔(iii). ¤

Proof of Theorem 1.2. (i) Assume that R/AnnRM is catenary.
(a)⇒(b) Similar to the proof of (i)⇒(iii) of Theorem 1.1.
(b)⇒(a) Let qRp ∈ minAttRp(Hi−dim R/p

pRp
(Mp)). Since Hi

m(M) satisfies the

property (∗), so does H
i−dim R/p
pRp

(Mp) by Proposition 3.2. Hence, by Lemma 2.3(ii),

Psuppi−dim R/p
Rp

(Mp) = Var(AnnRpH
i−dim R/p
pRp

(Mp)).

So qRp ∈ minPsuppi−dim R/p
Rp

(Mp) by Lemma 2.1(i). By the weak general shifted
localization principle, q ∈ AttR(Hi

m(M)). Let q1 ∈ minAttR(Hi
m(M)) be such that

q ⊇ q1. Since Hi
m(M) satisfies the property (∗), Psuppi

R(M) = Var(AnnRHi
m(M))

by Lemma 2.3(ii). So q1∈ Psuppi
R(M). By Lemma 3.1, q1Rp∈ Psuppi−dim R/p

Rp
(Mp).

Since qRp ⊇ q1Rp, we get by the minimality of qRp that q = q1. Therefore,

minAttRp(Hi−dim R/p
pRp

(Mp)) ⊆ {qRp | q ∈ minAttR(Hi
m(M)), q ⊆ p}.

Conversely, let q ⊆ p such that q ∈ minAttR(Hi
m(M)). Then by Lemma 2.1(i),

q ∈ minVar(AnnRHi
m(M)) and hence q ∈ minPsuppi

R(M) by Lemma 2.3(ii). By
Lemma 3.1, we get qRp ∈ Psuppi−dim R/p

Rp
(Mp). Assume

qRp ⊇ q1Rp ∈ minPsuppi−dim R/p
Rp

(Mp).

Then q ⊇ q1 and q1 ∈ Psuppi
R(M) by Lemma 3.1. The minimality of q implies

q = q1. Therefore,

qRp = q1Rp ∈ minPsuppi−dim R/p
Rp

(Mp).

By Proposition 3.2, H
i−dim R/p
pRp

(Mp) satisfies the property (∗), hence by Lemmas
2.1(i) and 2.3(ii), we have

qRp ∈ minPsuppi−dim R/p
Rp

(Mp) = min AttRp(Hi−dim R/p
pRp

(Mp)).

(b)⇔(c) By Proposition 3.2.
(ii) It is obvious that if Hi

m(M) satisfies the shifted localization principle, then (c)
holds true. On the other hand, we always have (c)⇒(a). Therefore, the statement
(ii) is proved. ¤

It follows by Theorem 1.2(ii) and Lemma 2.3(iv) that if Hi
m(M) satisfies the

shifted localization principle for all i, then R/AnnRM is universally catenary and
R/p is unmixed for all p ∈ AssR(M). Furthermore, by Lemma 2.3(iii) and Theorem
1.2(i), if (R, m) is universally catenary and all its formal fibres are Cohen-Macaulay,
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then minAttRp(Hi−dim R/p
pRp

(Mp)) = {qRp | q ∈ minAttR(Hi
m(M)), q ⊆ p} for all i

and all p ∈ Spec(R).

Proof of Theorem 1.3. (i) Let p ∈ Psuppi
R(M)\⋃i−1

j=0 Psuppj
R(M). Then we have

H
i−dim R/p
pRp

(Mp) 6= 0 since p ∈ Psuppi
R(M). Therefore, p ∈ Supp(M) and depthMp

≤ i− dimR/p. Assume

depthMp + dimR/p = j < i.

Since depthMp = j − dimR/p, it holds H
j−dim R/p
pRp

(Mp) 6= 0. So p ∈ Psuppj
R(M).

This is a contradiction to the hypothesis. Therefore,

Psuppi
R(M)\⋃i−1

j=0 Psuppj
R(M) ⊆ {p ∈ Supp(M) |depthMp + dimR/p = i}.

Conversely, let p ∈ Supp(M) be such that depthMp + dim R/p = i. Hence,
H

i−dim R/p
pRp

(Mp) 6= 0. We have p ∈ Psuppi
R(M). Assume that there exists j such

that 0 ≤ j < i and p ∈ Psuppj
R(M). Then H

j−dim R/p
pRp

(Mp) 6= 0. It follows that

depthMp + dimR/p ≤ j < i.

This is impossible. So

{p ∈ Supp(M) |depthMp + dimR/p = i} ⊆ Psuppi
R(M)\⋃i−1

j=0 Psuppj
R(M).

(ii) Since Hi
m(M) satisfies the property (∗), Psuppi

R(M) = Var(AnnRHi
m(M))

by Lemma 2.3(ii). So the proof follows from (i).
(iii) Since Hj

m(M) satisfies the property (∗) for all j ≤ i, we have Psuppj
R(M) =

Var(AnnRHj
m(M)) for all j ≤ i by Lemma 2.3(ii). Let

p ∈ minAttR(Hi
m(M))\⋃i−1

j=0 Var(AnnRHi
m(M)).

By (i), we have

p ∈ Psuppi
R(M)\⋃i−1

j=0 Psuppj
R(M) = {p ∈ Supp(M) |depthMp + dimR/p = i}.

Assume p ⊇ q ∈ min{p ∈ Supp(M) |depthMp + dim R/p = i}. By (i), we have
q ∈ Psuppi

R(M). On the other hand, p ∈ minAttR(Hi
m(M)) = min Psuppi

R(M).
Therefore,

p = q ∈ min{p ∈ Supp(M) |depthMp + dimR/p = i}.
Conversely, let p ∈ min{p ∈ Supp(M) |depthMp + dim R/p = i}. Then by (i)

and by the hypothesis,

p ∈ Psuppi
R(M)\⋃i−1

j=0 Psuppj
R(M) = Psuppi

R(M)\⋃i−1
j=0 Var(AnnRHj

m(M)).

There exists q ∈ minPsuppi
R(M) with p ⊇ q. It is obvious that

q /∈ ⋃i−1
j=0 Var(AnnRHj

m(M)) =
⋃i−1

j=0 Psuppj
R(M).
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Since Hi
m(M) satisfies the property (∗), by Lemmas 2.3(ii) and 2.1, we have

q ∈ minPsuppi
R(M) = min AttR(Hi

m(M)).

Hence, by (ii), q belongs to the set {p ∈ AttR(Hi
m(M)) |depthMp + dimR/p = i}.

Therefore, q ∈ {p ∈ Supp(M) |depthMp + dimR/p = i}. The minimality of p
implies p = q. ¤

Note that the hypothesis that Hj
m(M) satisfies the property (∗) in Theorem

1.3(ii) cannot be omitted. For example, let (R, m) be the Noetherian local do-
main of dimension 2 constructed by [7] such that R̂ has an associated prime ideal
p̂ of dimension 1. Then H1

m(R) does not satisfy the property (∗) (cf. [5]) and
Psupp0

R(R) = Var(AnnRH0
m(R)) = ∅. So 0 belongs to the left-hand side of the

formula in (ii) but it does not belong to the right-hand side of this formula. This
example also shows that the hypothesis that Hj

m(M) satisfies the property (∗) for
all j ≤ i in Theorem 1.3(iii) cannot be omitted.

The formula in Theorem 1.3(iii) has a connection with Faltings’ annihilator
theorem. Let b ⊆ a be ideals of R. In the terminology of Brodmann and Sharp [2],
the b-finiteness dimension fb

a (M) of M relative to a is defined as

fb
a (M) := inf{i ∈ N | b *

√
(0 : Hi

a(M)) }

and the b-minimum a-adjusted depth of M is defined as

λb
a(M) = inf{depthMp + ht (a + p)/p | p ∈ Spec(R)\Var(b)}.

If b = a, we write fa(M) instead of fb
a (M), called the finiteness dimension of M

relative to a. Furthermore, we have (cf. [2, 9.1.2]):

fa(M) = inf{i ∈ N |Hi
a(M) is not finitely generated}

= inf{i ∈ N | a *
√

(0 : Hi
a(M)) }.

If R is universally catenary and all its formal fibres are Cohen-Macaulay, then the
annihilator theorem holds true over R, i.e., fb

a (M) = λb
a(M) (cf. [2, 9.6.6]). Similar

to [2, 11.3.13], we get the following conclusion:

Remark 3.3. Assume that Hi
m(M) satisfies the property (∗) for all i. Let b be an

ideal of R. Then fb
m(M) = λb

m(M).
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