PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES, 2011

CuO LOADED SrTiO₃ NANOPARTICLES: AN EFFICIENT Pt-FREE PHOTOCATALYST FOR H₂ EVOLUTION FROM WATER

D. N. BUI, X. L. ZHAO, S.-Z. KANG, J. MU

Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology Meilong Road 130, Shanghai 200237, China

The photocatalytic H₂ evolution from water over CuO loaded SrTiO₃ nanoparticles has been investigated using CH₃OH as a sacrificial reagent. The results show that the CuO loaded SrTiO₃ nanoparticles are an efficient photocatalyst with a H₂ evolution rate of 5.81 mmol $h^{-1}g^{-1}$ under UV irradiation. Moreover, the photocatalyst is confirmed to be stable and can keep high activity for a long time.

1. Introduction

The photocatalytic H_2 production over $SrTiO_3$ has received much attention due to its excellent stability and current-voltage properties [1]. The results indicate that $SrTiO_3$ is a promising candidate when noble metals, such as Pt, are used as co-catalysts. However, Pt is expensive and rare, which is unfavorable to the large scale application of $SrTiO_3$. Therefore, the development of Pt-free and low cost co-catalysts is desired. Recently, it is reported that CuO can act as an efficient co-catalyst, and CuO loaded TiO_2 exhibits a high photocatalytic activity for the photocatalytic H_2 production [2]. Following this idea, it can be expected that CuO could be an efficient co-catalyst for $SrTiO_3$. However, there are few reports on the photocatalytic activity of CuO loaded $SrTiO_3$. In the present paper, we describe the preparation of CuO loaded $SrTiO_3$ nanoparticles and their photocatalytic activity for the H_2 production from the methanol aqueous solution.

2. Experimental

SrTiO₃ nanoparticles were prepared in a sol-gel process [1]. CuO loaded SrTiO₃ nanoparticles (CuO/SrTiO₃) were synthesized by the simple impregnation described previously [2]. Therein, SrTiO₃ nanoparticles loaded with 1.5 wt.% CuO were denoted as 1.5 % CuO/SrTiO₃. Pt-loaded SrTiO₃ nanoparticles were fabricated by the *in situ* photo-deposition [3]. The photocatalysts were characterized with Rigaku D/Max2550 VB/PC X-ray diffractometer (Japan), JEOL JEM-200CX transmission electron microscope (Japan), PHI 5000 Versaprobe spectrometer (Japan), and Micromeritics ASAP-2020 nitrogen

adsorption apparatus (USA). The photocatalytic reaction was carried out in a gas-closed system with a quartz reactor. A 300 W high-pressure Hg lamp was used as light source. The amounts of H_2 evolution were analyzed with an on-line gas chromatograph (GC-112A, China, N₂ carrier).

3. Results and discussion

Fig. 1 shows the XRD patterns of 1.5 % CuO/SrTiO₃ and pure SrTiO₃. It can be observed that there exist six peaks at 32.42° , 39.98° , 46.48° , 57.79° , 67.80° and 77.17° in two patterns, corresponding to the (110), (111), (200), (211), (220) and (310) planes of cubic SrTiO₃ (JCPDS card No. 35-0734) [4], respectively. However, the diffraction peak of CuO is not observed in Fig. 1a. One possible explanation is that the CuO particles are too small to give well-defined diffraction peaks.

Figure 1. XRD patterns of 1.5 % CuO/SrTiO₃ (a) and pure SrTiO₃ (b).

XPS analysis (not shown here) displays that there exist two peaks at 933.6 eV and 953.4 eV corresponding to $Cu-2p_{3/2}$ and $Cu-2p_{1/2}$ of CuO, respectively [2]. These results show that the as-synthesized sample is made of SrTiO₃ and CuO.

Figure 2. TEM images of pure $SrTiO_3$ (a) and 1.5 % CuO/SrTiO₃ (b).

The TEM images of pure $SrTiO_3$ and 1.5 % CuO/SrTiO₃ are shown in Fig. 2. It can be observed that there exists some aggregation in the $SrTiO_3$ loaded with CuO. Moreover, the CuO particles cannot be observed on the surface of $SrTiO_3$ nanoparticles. In combination with the XRD and XPS analyses, it can be deduced that CuO is homogeneously spread on the surface of $SrTiO_3$ nanoparticles.

Fig. 3 shows the irradiation time courses of H_2 production catalyzed by pure SrTiO₃, 1.5 % CuO/SrTiO₃ and SrTiO₃ loaded with 2 % Pt, respectively. It is seen that 1.5 % CuO/SrTiO₃ is a highly active photocatalyst with the highest rate of H_2 evolution of 5.81 mmol $h^{-1}g^{-1}$ under UV irradiation, while the H_2 production can be hardly observed using pure SrTiO₃ as a photocatalyst.

Figure 3. (A) Irradiation time dependence of the amount of H₂ evolved over pure SrTiO₃ (a),
1.5 % CuO/SrTiO₃ (b) and SrTiO₃ loaded with 2 % Pt (c); (B) time course of H₂ production catalyzed by 1.5 % CuO/SrTiO₃. 120 mg of catalysts and
60 mL of MeOH aqueous solution (60 %, v/v) at 45 °C.

The Brunauer-Emmett-Teller measurement indicates that the specific surface area of 1.5 % CuO/SrTiO₃ is $15.5 \text{ m}^2 \cdot \text{g}^{-1}$, which is almost the same as that of pure SrTiO₃ (16.2 m² \cdot \text{g}^{-1}). The TEM images show that the morphology of 1.5 % CuO/SrTiO₃ is similar to that of pure SrTiO₃. Therefore, the enhanced photocatalytic activity of CuO/SrTiO₃ ought to be ascribed to CuO. One possible explanation is that CuO acts as a charge transferring site and/or active site in the photocatalytic process. As a result, CuO provides an efficient separation of electrons and holes, thus enhancing the potential of hydrogen generation. Moreover, although the photocatalytic activity of 1.5 % CuO/SrTiO₃ is lower than that of SrTiO₃ loaded with 2 % Pt (8.83 mmol h⁻¹g⁻¹), its rate of H₂ evolution is more than 60 % of that of SrTiO₃ loaded with 2 % Pt. In addition,

606

1.5 % CuO/SrTiO₃ is a stable photocatalyst and can keep high activity over 40 h. Therefore, it can be concluded that CuO is an alternative to Pt as an effective cocatalyst for SrTiO₃.

In order to test the stability of 1.5 % CuO/SrTiO₃, the photocatalytic activity of 1.5 % CuO/SrTiO₃ was repeatedly examined many times. The results of two cycles are shown in Fig. 4 demonstrating that CuO/SrTiO₃ is stable enough to be recycled.

Figure 4. Hydrogen evolution in two cycles over 1.5 % CuO/SrTiO₃.

4. Conclusion

The CuO/SrTiO₃ is concluded to be a highly active photocatalyst for the photocatalytic H_2 production from water. The results provide us with new possibility for designing an alternative to Pt as a co-catalyst for SrTiO₃. Further efforts are currently undertaken.

Acknowledgements

This work was financially supported by the Key Project of the National Natural Science Foundation of China (No.20933007) and the National High Technology Research and Development Program of China (No.2009AA05Z101).

References

- L. Chen, S. C. Zhang L. Q. Wang, D. F. Xue, S. Yin, J. Cryst. Growth 311, 735 (2009).
- 2. H. J. Choi, M. Kang, Int. J. Hydrogen Energy 32, 3841 (2007).
- 3. C. C. Lo, C. W. Huang, C. H. Liao, J. C. S. Wu, *Int. J. Hydrogen Energy* 35, 1523 (2010).
- T. Puangpetcha, T. Sreethawonga, S. Yoshikawac, S. Chavadej, J. Mol. Catal. A: Chem 312, 97 (2009).