
This article was downloaded by: [UNSW Library]
On: 23 April 2015, At: 18:19
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Applicable Analysis: An International
Journal
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gapa20

Differential stability of convex
optimization problems under inclusion
constraints
D.T.V. Ana & N.D. Yenb

a Department of Mathematics and Informatics, College of
Sciences, Thai Nguyen University, Thai Nguyen City, Vietnam.
b Institute of Mathematics, Vietnam Academy of Science and
Technology, 18 Hoang Quoc Viet, Hanoi 10307, Vietnam.
Published online: 14 Mar 2014.

To cite this article: D.T.V. An & N.D. Yen (2015) Differential stability of convex optimization
problems under inclusion constraints, Applicable Analysis: An International Journal, 94:1, 108-128,
DOI: 10.1080/00036811.2014.890710

To link to this article:  http://dx.doi.org/10.1080/00036811.2014.890710

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://crossmark.crossref.org/dialog/?doi=10.1080/00036811.2014.890710&domain=pdf&date_stamp=2014-03-14
http://www.tandfonline.com/loi/gapa20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00036811.2014.890710
http://dx.doi.org/10.1080/00036811.2014.890710


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

U
N

SW
 L

ib
ra

ry
] 

at
 1

8:
19

 2
3 

A
pr

il 
20

15
 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Applicable Analysis, 2015
Vol. 94, No. 1, 108–128, http://dx.doi.org/10.1080/00036811.2014.890710

Differential stability of convex optimization problems under inclusion
constraints

D.T.V. Ana and N.D. Yenb∗

aDepartment of Mathematics and Informatics, College of Sciences, Thai Nguyen University,
Thai Nguyen City, Vietnam; bInstitute of Mathematics, Vietnam Academy of Science and

Technology, 18 Hoang Quoc Viet, Hanoi 10307, Vietnam

Communicated by J.-C. Yao

(Received 31 October 2013; accepted 26 January 2014)

Motivated by the recent work of Mordukhovich et al. [Subgradients of marginal
functions in parametric mathematical programming. Math. Program. Ser. B. 2009;
116:369–396] on the optimal value function in parametric programming under
inclusion constraints, this paper presents some new results on differential stabil-
ity of convex optimization problems under inclusion constraints and functional
constraints in Hausdorff locally convex topological vector spaces. By using the
Moreau–Rockafellar theorem and appropriate regularity conditions, we obtain
formulas for computing the subdifferential and the singular subdifferential of the
optimal value function. By virtue of the convexity, several assumptions used in
the above paper by Mordukhovich et al., like the nonemptyness of the Fréchet
upper subdiffential of the objective function, the existence of a local upper
Lipschitzian selection of the solution map, as well as the μ-inner semicontinuity
and the μ-inner semicompactness of the solution map, are no longer needed.
Relationships between our results and the corresponding ones in Aubin’s book
[Optima and equilibria. An introduction to nonlinear analysis. 2nd ed. New York
(NY): Springer; 1998] are discussed.

Keywords: parametric programming under inclusion constraints; convexity;
optimal value function; subdifferential; singular subdifferential; the
Moreau–Rockafellar theorem; normal cone to the sublevel set of a convex
function

AMS Subject Classifications: 49J53; 49Q12; 90C25; 90C31

1. Introduction

If a mathematical programming problem depends on a parameter, that is, the objective
function and the constraints depend on a certain parameter, then the optimal value is a
function of the parameter, and the solution map is a set-valued map on the parameter of
the problem. In general, the optimal value function is a fairly complicated function of the
parameter; it is often nondifferentiable on the parameter, even if the problem in question is a
mathematical program with smooth functions on all the variables and on the parameter. This
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Applicable Analysis 109

is the reason of the great interest in having formulas for computing generalized directional
derivatives (Dini directional derivative, Dini-Hadarmard directional derivative, and the
Clarke generalized directional derivative) and formulas for evaluating subdifferentials (sub-
differential in the sense of convex analysis, Clarke subdifferential, Fréchet subdifferential,
limiting subdifferential – also called the Mordukhovich subdifferential) of the optimal value
function.

Studies on differentiability properties of the optimal value function and of the solution
map in parametric mathematical programming are usually classified as studies on differential
stability of optimization problems. Aubin [1], Auslender [2], Bonnans and Shapiro [3], Dien
and Yen [4], Gauvin and Dubeau [5,6], Gollan [7], Mordukhovich et al. [8], Rockafellar [9],
Thibault [10], and many other authors, have had contributions to this research direction.

Motivated by the recent work of Mordukhovich et al. [8] on the optimal value function in
parametric programming under inclusion constraints, this paper presents some new results
about differential stability of convex optimization problems under inclusion constraints
and functional constraints in Hausdorff locally convex topological vector spaces. By using
the Moreau–Rockafellar theorem (see e.g. [11, p.48]) and appropriate regularity conditions,
we obtain formulas for computing the subdifferential and the singular subdifferential of the
optimal value function. By virtue of the convexity, several assumptions used in the above
paper by Mordukhovich et al., like the nonemptyness of the Fréchet upper subdiffential of
the objective function, the existence of a local upper Lipschitzian selection of the solution
map, as well as the μ-inner semicontinuity and the μ-inner semicompactness of the solution
map, are no longer needed. In addition, we can use the Hausdorff locally convex topological
vector spaces framework instead of the Banach spaces setting in [8].

Thus, on one hand, our results have the origin in the study of Mordukhovich et al.
[8]. On the other hand, they are the results of deepening that study for the case of convex
programming problems.

Interestingly, in order to obtain differential stability properties in parametric convex
programming, one can use [1] the Fenchel–Moreau theorem [11, p.175]. More precisely,
by using that theorem and a series of advanced auxiliary results, Aubin [1, Problem 35 –
Subdifferentials of Marginal Functions, p.335] has obtained a formula for computing the
subdifferential of the optimal value function under a regularity assumption. This approach
requires that the objective function of the problem in question must be convex, lower
semicontinuous, and the constraint set mapping must be convex and have closed graph.
The above approach of using the Moreau–Rockafellar theorem does not require the last
two additional assumptions on the lower semicontinuity of the objective function and on
the closedness of the graph of the constraint set mapping. Therefore, although requiring
regularity assumptions which are somewhat stronger than that of Aubin, our results are
established for a larger class of convex programming problems, and do not coincide with
Aubin’s result if one considers the special case where the spaces are Hilbert and the objective
function does not depend on the parameter.

Applied to parametric optimal control problems, with convex objective functions and
linear dynamical systems, either discrete or continuous, our results can lead to some rules
for the exact computing of the subdifferential and the singular subdifferential of the optimal
value function via the data of the given problem.

The organization of the paper is as follows. Section 2 recalls some definitions from
variational analysis [12]. Three motivational results from [8] are described in Section 3.
Differential stability under convexity, our focus point, is studied in Sections 4 and 5. The
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110 D.T.V. An and N.D. Yen

final section compares our results with the results recalled in Section 2 and the
above-mentioned result of Aubin.

2. Preliminaries

2.1. Normal cones

Let X be a Banach space with the dual denoted by X∗. For any set-valued map F : X ⇒ X∗,
by

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗ : ∃ xk → x̄, x∗
k

w∗−→ x∗,

x∗
k ∈ F(xk) ∀k = 1, 2, . . .

}
one denotes the sequential Painlevé-Kuratowski upper limit of F as x tends to x̄ with respect

to the norm topology of X and the weak∗ topology of X∗. Here x∗
k

w∗−→ x∗ means that the
sequence {x∗

k } ⊂ X∗ weakly∗ converges to x∗ ∈ X∗.

If � ⊂ X is a given subset, the notation x
�−→ x̄ means that x → x̄ and x ∈ �.

Definition 2.1 (See [12, Vol. I, p.4]) Let � be a nonempty subset of X.

(i) For any x ∈ � and ε ≥ 0, the set of ε-normals of � at x is defined by

N̂ε(x; �) :=
⎧⎨⎩x∗ ∈ X∗ | lim sup

u
�−→x

〈x∗, u − x〉
||u − x || ≤ ε

⎫⎬⎭ .

The set N̂ (x;�) := N̂0(x;�) is called the Fréchet normal cone of � at x . If x �∈ �,
we put N̂ε(x;�) = ∅ for all ε ≥ 0.

(ii) Let x̄ ∈ �. The set

N (x̄;�) := Lim sup
x→x̄,ε↓0

N̂ε(x;�),

is called the Mordukhovich normal cone or the limiting normal cone of � at x̄ . We
put N (x̄;�) = ∅ if x̄ �∈ �.

It is clear that N̂ (x;�) ⊂ N (x;�) for all � ⊂ X and x ∈ �. If N̂ (x; �) = N (x;�)

for x ∈ �, then one says [12, Def. 1.4] that � is normally regular at x .

Proposition 2.1 (See [12, Vol. I, p.6]) Let � be a convex set. Then,

N̂ε(x̄;�) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ ε||x − x̄ ||, ∀x ∈ �
}

for all ε ≥ 0 and x̄ ∈ �. Especially, the set N̂ (x̄;�) coincides with the convex cone of �

at x̄ in the sense of convex analysis, that is,

N̂ (x̄;�) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ 0, ∀x ∈ �}. (2.1)
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Applicable Analysis 111

The notions in Definition 2.1 have a local character, since they just depend on the
structure of � in an arbitrarily small neighborhood of the point in question. Thus, one can
formulate the results in Proposition 2.1 for locally convex sets, as follows.

Proposition 2.2 (See [12, Vol. I, p.7]) Let� ⊂ X and x̄ ∈ �. If there is some U ∈ N (x̄),
where N (x̄) denotes the family of the neighborhoods of x̄ , such that � ∩ U is convex, then

N̂ε(x̄;�) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ ε||x − x̄ ||, ∀x ∈ � ∩ U }
and

N (x̄;�) = N̂ (x̄;�) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ 0, ∀x ∈ � ∩ U }.

2.2. Subdifferentials

Consider a function f : X → R having values in the extended real line R = [−∞,+∞].
One says that f is proper if f (x) > −∞ for all x ∈ X , and the domain

dom f := {x ∈ X | f (x) < ∞}
is nonempty. The epigraph and the hypograph of f are given, respectively, by

epi f := {(x, α) ∈ X × R | α ≥ f (x)}
and

hypo f := {(x, α) ∈ X × R | α ≤ f (x)}.
In the sequel, the notation x

f−→ x̄ means that x → x̄ and f (x) → f (x̄).

Definition 2.2 (See [12, Vol. I, p.82,83,87]) Let f : X → R be a function defined on a
Banach space. Suppose that x̄ ∈ X and | f (x̄)| < ∞.

(i) The set

∂̂ f (x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N̂ ((x̄, f (x̄)); epi f )
}

is called the Fréchet subdifferential of f at x̄ .
(ii) The set

∂̂+ f (x̄) := {x∗ ∈ X∗ | (−x∗, 1) ∈ N̂ ((x̄, f (x̄)); hypo f )
}

is called the Fréchet upper subdifferential of f at x̄ .
(iii) The set

∂ f (x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N ((x̄, f (x̄)); epi f )
}

is said to be the Mordukhovich subdifferential or the limiting subdifferential of f
at x̄ .

(iv) The set

∂∞ f (x̄) := {x∗ ∈ X∗ | (x∗, 0) ∈ N ((x̄, f (x̄)); epi f )}
is said to be the singular subdifferential of f at x̄ .
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112 D.T.V. An and N.D. Yen

In the case where | f (x̄)| = ∞, one lets ∂̂ f (x̄), ∂̂+ f (x̄), ∂ f (x̄), and ∂∞ f (x̄) to be
empty sets.

The inclusion ∂̂ f (x̄) ⊂ ∂ f (x̄) is valid for any x̄ ∈ X. In the case where ∂̂ f (x̄) = ∂ f (x̄)

for x̄ ∈ dom f , one says [12, Def. 1.91] that f is lower regular at x̄ . If f is convex, then
by [12, Theorem 1.93] we have

∂̂ f (x̄) = ∂ f (x̄) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ f (x) − f (x̄), ∀x ∈ X}, (2.2)

i.e. the Fréchet subdifferential and the Mordukhovich subdifferential of f at x̄ coincide
with the subdifferential of f at x̄ in the sense of convex analysis [11, p.196]. In particular,
f is lower regular at x̄ .

Given a subset � ⊂ X , one defines the indicator function δ(·;�) : X → R of � by
setting

δ(x;�) :=
{

0 if x ∈ �,

+∞ if x �∈ �.

Proposition 2.3 (See [12, Vol. I, p.84,88]) For any x̄ ∈ �, we have

∂̂δ(x̄;�) = N̂ (x̄;�)

and

∂∞δ(x̄;�) = ∂δ(x̄;�) = N (x̄; �).

2.3. Coderivatives

Let F : X ⇒ Y be a set-valued map between Banach spaces. The graph and the domain
of F are given, respectively, by the formulas

gph F := {(x, y) ∈ X × Y | y ∈ F(x)},
dom F := {x ∈ X | F(x) �= ∅}.

Equipping the product space X × Y with the norm ‖(x, y)‖ := ‖x‖ + ‖y‖, by the
above notions of normal cones, one can define the concepts of Fréchet coderivative and
Mordukhovich coderivative (also called the limiting coderivative) of set-valued maps as
follows.

Definition 2.3 (See [12, Vol. I, p.40,41])

(i) The Fréchet coderivative of F at (x̄, ȳ) ∈ gph F is the multifunction D̂∗F(x̄, ȳ) :
Y ∗ ⇒ X∗ given by

D̂∗F(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂ ((x̄, ȳ); gph F)
}
, ∀y∗ ∈ Y ∗.

(2.3)

(ii) The Mordukhovich coderivative of F at (x̄, ȳ) ∈ gph F is the multifunction
D∗F(x̄, ȳ) : Y ∗ ⇒ X∗ given by

D∗F(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N ((x̄, ȳ); gph F)
}
, ∀y∗ ∈ Y ∗.
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Applicable Analysis 113

If (x̄, ȳ) /∈ gph F then we accept the convention that the sets D̂∗F(x̄, ȳ)(y∗) and
D∗F(x̄, ȳ)(y∗) are empty for any y∗ ∈ Y ∗.

2.4. Optimal value function

Consider a set-valued map G : X ⇒ Y between Banach spaces, a function ϕ : X ×Y → R.
The optimal value function of the parametric optimization problem under an inclusion
constraint, defined by G and ϕ, is the function μ : X → R, with

μ(x) := inf {ϕ(x, y) | y ∈ G(x)} . (2.4)

By the convention inf ∅ = +∞, we have μ(x) = +∞ for any x /∈ dom G.

The set-valued map G (resp., the function ϕ) is called the map describing the constraint
set (resp., the objective function) of the problem on the right-hand side of (2.4).

Corresponding to each data pair {G, ϕ} we have one optimization problem depending
on a parameter x :

(Px ) min{ϕ(x, y) | y ∈ G(x)}. (2.5)

Formulas for computing exactly or estimating the Fréchet subdifferential and the
Mordukhovich subdifferential of the optimal value function μ(x), to be considered in
forthcoming sections, are connected tightly with the solution map M : dom G ⇒ Y ,
with

M(x) := {y ∈ G(x) | μ(x) = ϕ(x, y)}, ∀x ∈ dom G, (2.6)

of the problem (Px ).

Definition 2.4 If gph G is a convex set in X × Y (that is, G is a convex set-valued map)
and if epi ϕ is a convex set in X × Y × R (that is, ϕ is a convex function), then (2.5) is said
to be a parametric convex optimization problem.

It is a simple matter to show that if (2.5) is a convex optimization problem, then μ is a
convex function. Hence, under that convexity assumption, the Fréchet subdifferential and
the Mordukhovich subdifferential of μ at x̄ ∈ dom μ, with μ(x̄) �= −∞, coincide with the
subdifferential of μ at x̄ in the sense of convex analysis, and these sets can be computed by
formula (2.2) with f being replaced by μ.

3. Motivational results

3.1. Fréchet subdifferential of µ(.)

The following theorem gives us an upper estimate for the Fréchet subdifferential of the
optimal value function in formula (2.4) at a given parameter x̄ . This estimate is established
via the Fréchet coderivative of the map G describing the constraint set and the Fréchet upper
subdifferentials of the objective function ϕ.
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114 D.T.V. An and N.D. Yen

Theorem 3.1 (See [8, Theorem 1]) Suppose that the optimal value function μ(.) in (2.4)
is finite at x̄ ∈ dom M and that ȳ ∈ M(x̄) is a vector satisfying ∂̂+ϕ(x̄, ȳ) �= ∅. Then,

∂̂μ(x̄) ⊂
⋂

(x∗,y∗)∈̂∂+ϕ(x̄,ȳ)

{
x∗ + D̂∗G(x̄, ȳ)(y∗)

}
. (3.1)

The estimate (3.1) is valid in the form of an inclusion. It is natural to ask when that
inclusion holds as an equality. Additional assumptions based on the following definitions
will be made to get the equality.

Definition 3.1 A map h : D → Y is said to be locally upper Lipschitzian at x̄ ∈ D, where
D is a subset of X , if there exist η > 0 and 	 ≥ 0 such that

||h(x) − h(x̄)|| ≤ 	||x − x̄ ||, ∀x ∈ B(x̄, η) ∩ D.

Definition 3.2 Let D ⊂ X . One says that a set-valued map F : D ⇒ Y has a local upper
Lipschitzian selection at (x̄, ȳ) ∈ gph F if there is a locally upper Lipschitzian single-
valued map h : D → Y at x̄ such that h(x̄) = ȳ and h(x) ∈ F(x) for all x belonging to the
intersection of D with a neighborhood of x̄ .

The next theorem gives a sufficient condition for the inclusion (3.1) to hold as equality.

Theorem 3.2 (See [8, Theorem 2]) Suppose that the optimal value function μ(.) in (2.4)
is finite at x̄ ∈ dom M. Assume in addition that ϕ Fréchet differentiable at (x̄, ȳ) and the
solution map M : dom G ⇒ Y has a local upper Lipschitzian selection at (x̄, ȳ). Then,

∂̂μ(x̄) = x∗ + D̂∗G(x̄, ȳ)(y∗),

with

(x∗, y∗) := ∇ϕ(x̄, ȳ) =
(

∂ϕ(x̄, ȳ)

∂x
,
∂ϕ(x̄, ȳ)

∂y

)
being the gradient of ϕ at (x̄, ȳ).

The reader is referred to [8] for illustrative examples for Theorems 3.1 and 3.2.
The assumption ∂̂+ϕ(x̄, ȳ) �= ∅ in Theorem 3.1 is rather strict. It excludes from our

consideration convex, Lipschitzian functions of the type ϕ(x, y) = |x |+ y, (x, y) ∈ R×R,
or ϕ(x, y) = ||x || + g(y), (x, y) ∈ X × Y , where g : Y → R is a given function,
X and Y are Banach spaces with dim X ≥ 1. Indeed, for the first example, choosing
(x̄, ȳ) = (0, 0) we have ∂̂+ϕ(x̄, ȳ) = ∅. For the second example, we have ∂̂+ϕ(x̄, ȳ) = ∅
for any (x̄, ȳ) = (0, v) ∈ X × Y .

The above remark can be strengthened as follows: Theorem 3.1 cannot be used for any
problem of the form (2.5) with ϕ being proper, convex, continuous, and nondifferentiable at a
given point (x̄, ȳ) ∈ gph M. Indeed, since ϕ is convex, the Fréchet subdifferential ∂̂ϕ(x̄, ȳ)

coincides with the subdifferential in the sense of [11, Subsection 4.2.1]. As ϕ is continuous
at (x̄, ȳ), the latter set is nonempty by [11, Prop. 3, p.199]. Hence, if ∂̂+ϕ(x̄, ȳ) �= ∅ then ϕ

is Fréchet differentiable at (x̄, ȳ) by [12, Prop. 1.87]. This contradicts the condition saying
that ϕ is nondifferentiable at (x̄, ȳ). In the two subsequent sections, we will obtain some
results for parametric convex problems of the form (2.5) which allow us to avoid not only
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Applicable Analysis 115

the assumption ∂̂+ϕ(x̄, ȳ) �= ∅ in Theorem 3.1, but also the requirement that the solution
map admits a local upper Lipschitzian selection in Theorem 3.2.

3.2. Mordukhovich subdifferential of µ(.)

In order to recall a main result from [8] on computing the Mordukhovich subdifferential of
μ(.), we have to consider the following definitions.

Definition 3.3 One says that the solution map M(.) is μ-inner semicontinuous at (x̄, ȳ) ∈
gph M if for every sequence xk

μ−→ x̄ there exists a sequence yk ∈ M(xk) that contains a
subsequence converging to ȳ.

Definition 3.4 The solution map M(.) is said to be μ-inner semicompact at x̄ if for every
sequence xk

μ−→ x̄ there is a sequence yk ∈ M(xk) that contains a convergent subsequence.

The properties considered in Definitions 3.3 and 3.4 extend the corresponding notions
in [12, Def. 1.63] and adapt them to the solution map M(.) of (2.5). The only difference is
that the condition xk → x̄ in [12] is now replaced by the weaker condition xk

μ−→ x̄ .

Definition 3.5 A subset � in a Banach space X is called sequentially normally compact

(SNC) at x̄ if for any sequences εk ↓ 0, xk
�−→ x̄ and x∗

k ∈ N̂εk (xk;�) one has

[
x∗

k
w∗−→ 0
] =⇒ [||x∗

k || → 0
]

as k → ∞.

Definition 3.6 A set-valued map F : X ⇒ Y is said to be sequentially normally compact
(SNC) at (x̄, ȳ) ∈ gph F if its graph possesses this property.

Definition 3.7 Afunction ϕ : X → R is called sequentially normally epi-compact (SNEC)
at x̄ if its epigraph

epi ϕ := {(x, α) ∈ X × R | ϕ(x) ≤ α}

is SNC at (x̄, ϕ(x̄)).

Theorem 3.3 (See [8, Theorem 7]) Let M(.) be the solution map defined in (2.6), and
let x̄ ∈ dom M. The following assertions hold:

(i) For a given vector ȳ ∈ M(x̄), suppose that M is μ-inner semicontinuous at (x̄, ȳ) ∈
gph M, that either ϕ is SNEC at (x̄, ȳ) or G is SNC at (x̄, ȳ), and the regularity
condition

∂∞ϕ(x̄, ȳ) ∩ (−N ((x̄, ȳ); gph G)) = {0} (3.2)
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116 D.T.V. An and N.D. Yen

is satisfied (these assumptions are automatically satisfied if ϕ is Lipschitz continuous
around (x̄, ȳ)). Then one has the inclusions

∂μ(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
, (3.3)

∂∞μ(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
, (3.4)

(ii) Assume that M is μ-inner semicompact at x̄ and that the other assumptions of (i)
are satisfied at any (x̄, ȳ) ∈ gph M. Then one has the inclusions

∂μ(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ),ȳ∈M(x̄)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
,

∂∞μ(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ),ȳ∈M(x̄)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
,

(iii) In addition to the assumptions in (i), assume that ϕ is strictly differentiable at
(x̄, ȳ), that M : dom G ⇒ Y admits a local Lipschitzian selection at (x̄, ȳ), and
G is normally regular at (x̄, ȳ). Then the optimal value function μ is lower regular
at x̄ and (3.3) holds as equality, i.e.

∂μ(x̄) = ϕ′
x (x̄, ȳ) + D∗G(x̄, ȳ)(ϕ′

y(x̄, ȳ). (3.5)

We are going to show that if the problem in question is convex then several assumptions
in Theorems 3.1–3.3 are no longer needed and, surprisingly, all the upper estimates become
equalities.

4. Differential stability under convexity

We now present some new results on differential stability of convex optimization problems
under inclusion constraints. By using the Moreau–Rockafellar theorem and appropriate
regularity conditions, we will obtain formulas for computing the subdifferential and the
singular subdifferential of the optimal value functions.

From now on, if not otherwise stated, we assume that X, Y are Hausdorff locally convex
topological vector spaces with the topological duals denoted, respectively, by X∗ and Y ∗.

For a convex set � ⊂ X , the normal cone of � at x̄ ∈ � is given by

N (x̄;�) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ 0, ∀x ∈ �}. (4.1)

As noted in Section 2, formula (4.1) fully agrees with formula (2.1), which was given in a
Banach space setting.

For a convex function f : X → R, the subdifferential of f at

x̄ ∈ dom f = {x ∈ X | f (x) < ∞},
with f (x̄) �= −∞, is given by

∂ f (x̄) = {x∗ ∈ X∗ | 〈x∗, x − x̄〉 ≤ f (x) − f (x̄), ∀x ∈ X}.
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Applicable Analysis 117

This is a generalization of formula (2.2) for the case of functions defined on Hausdorff
locally convex topological vector spaces. The set

∂∞ f (x̄) = {x∗ ∈ X∗ | (x∗, 0) ∈ N ((x̄, f (x̄)); epi f )} (4.2)

is called the singular subdifferential of f at x̄ ∈ dom f , with f (x̄) �= −∞. We put
∂ f (x̄) = ∅ and ∂∞ f (x̄) = ∅ if either x̄ /∈ dom f or f (x̄) = −∞.

For a convex set-valued map F : X ⇒ Y , we define the coderivative of F at (x̄, ȳ) ∈
gph F as the multifunction D∗F(x̄, ȳ) : Y ∗ ⇒ X∗ given by

D∗F(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N ((x̄, ȳ); gph F)
}
, ∀y∗ ∈ Y ∗

with N ((x̄, ȳ); gph F) standing for the normal cone of the convex set gph F ⊂ X × Y at
(x̄, ȳ), i.e.

N ((x̄, ȳ); gph F) = {(x∗, y∗) ∈ X∗×Y ∗ | 〈x∗, x − x̄〉+〈y∗, y− ȳ〉 ≤ 0 ∀(x, y) ∈ gph F}.
If (x̄, ȳ) /∈ gph F , then we put D∗F(x̄, ȳ)(y∗) = ∅ for any y∗ ∈ Y ∗.

The following theorem from convex analysis is the main tool in our subsequent proofs.

Theorem 4.1 (See [11, Theorem 0.3.3 on p.47–50, Theorem 1 on p.200]) Let f1, . . . , fm

be proper convex functions on X. Then

∂( f1 + · · · + fm)(x) ⊃ ∂ f1(x) + · · · + ∂ fm(x)

for all x ∈ X. If, at a point x0 ∈ dom f1 ∩ · · · ∩ dom fm, all the functions f1, . . . , fm,
except, possibly, one are continuous, then

∂( f1 + · · · + fm)(x) = ∂ f1(x) + · · · + ∂ fm(x)

for all x ∈ X.

We denote the interior of a subset � of X by int �. Using indicator functions of convex
sets, one can easily derive from Theorem 4.1 the next intersection formula.

Proposition 4.1 (See [11, p.205]) Let A1, A2, . . . , Am be convex subsets of X. Set
A = A1 ∩ A2 ∩ · · · ∩ Am and let A1 ∩ (int A2) ∩ · · · ∩ (int Am) �= ∅. Then,

N (x; A) = N (x; A1) + N (x; A2) + · · · + N (x; Am), ∀x ∈ X.

Proposition 4.2 If f : X → R is a convex function, then

∂∞ f (x) = N (x; dom f ) ∀x ∈ X.

Proof Indeed, since epi f is a convex set, by (4.2) we have

x∗ ∈ ∂∞ f (x) ⇔ (x∗, 0) ∈ N ((x, f (x)); epi f )

⇔ 〈(x∗, 0), (u, μ) − (x, f (x))〉 ≤ 0, ∀(u, μ) ∈ epi f

⇔ 〈(x∗, 0), (u − x, μ − f (x))〉 ≤ 0, ∀(u, μ) ∈ epi f

⇔ 〈x∗, u − x〉 ≤ 0, ∀u ∈ dom f

⇔ x∗ ∈ N (x; dom f ).
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118 D.T.V. An and N.D. Yen

This proves that ∂∞ f (x) = N (x; dom f ). �

Let us turn back our attention to the parametric optimization problem (2.5). The next
theorem provides us with formulas for computing the subdifferential and the singular
subdifferential of μ in the case G and ϕ are assumed to be convex.

Theorem 4.2 Let G : X ⇒ Y be a convex set-valued mapping and ϕ : X × Y → R be
a proper convex function. If at least one of the following regularity conditions is satisfied:

(a) int(gph G) ∩ dom ϕ �= ∅,

(b) ϕ is continuous at a point (x0, y0) ∈ gph G,

then for any x̄ ∈ dom μ, with μ(x̄) �= −∞, and for any ȳ ∈ M(x̄) we have

∂μ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
(4.3)

and

∂∞μ(x̄) =
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
. (4.4)

Therefore, if M(x̄) is nonempty then ∂μ(x̄) and ∂∞μ(x̄) can be computed, respectively,
by the formulas (4.3) and (4.4), where the right-hand sides do not depend on the choice of
ȳ ∈ M(x̄).

Proof Let x̄ ∈ dom μ and ȳ ∈ M(x̄). To prove the inclusion “⊂” in (4.3), take an arbitrary
element x̄∗ ∈ ∂μ(x̄). Since the optimal value function μ is convex, we have

μ(x) − μ(x̄) ≥ 〈x̄∗, x − x̄〉, ∀x ∈ X.

Now, taking an arbitrary u ∈ X and selecting a v ∈ G(u), from the above property we get

ϕ(u, v) − ϕ(x̄, ȳ) = ϕ(u, v) − μ(x̄) ≥ μ(u) − μ(x̄)

≥ 〈x̄∗, u − x̄〉 + 〈0, v − ȳ〉.
Therefore,

ϕ(u, v) − ϕ(x̄, ȳ) ≥ 〈(x̄∗, 0), (u, v) − (x̄, ȳ)〉, ∀(u, v) ∈ gph G.

Hence

(ϕ + δ(·; gph G))(u, v) − (ϕ + δ(·; gph G))(x̄, ȳ)

≥ 〈(x̄∗, 0), (u, v) − (x̄, ȳ)〉 ∀(u, v) ∈ X × Y, (4.5)

where δ((x, y); gph G) = 0 if (x, y) ∈ gph G, and δ((x, y); gph G) = +∞ if (x, y) /∈
gph G, is the indicator function of gph G. From (4.5) we have

(x̄∗, 0) ∈ ∂(ϕ + δ(·; gph G))(x̄, ȳ). (4.6)

Since gph G is convex, δ(·; gph G) : X × Y → R is convex. Obviously, δ(·; gph G) is
continuous at every point belonging to int(gph G).
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Applicable Analysis 119

Consequently, if the regularity condition (a) is satisfied, then δ(·; gph G) is continuous
at a point in dom ϕ. By Theorem 4.1, from (4.6) we have

(x̄∗, 0) ∈ ∂ϕ(x̄, ȳ) + ∂δ(·; gph G)(x̄, ȳ)

= ∂ϕ(x̄, ȳ) + N ((x̄, ȳ); gph G).
(4.7)

Thus, there exists (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) such that

(x̄∗, 0) ∈ (x∗, y∗) + N ((x̄, ȳ); gph G),

or
(x̄∗ − x∗,−y∗) ∈ N ((x̄, ȳ); gph G),

i.e.
x̄∗ − x∗ ∈ D∗G(x̄, ȳ)(y∗).

The last inclusion implies that

x̄∗ ∈ x∗ + D∗G(x̄, ȳ)(y∗). (4.8)

Consider the case where the regularity condition (b) is fulfilled. Since

dom δ(·; gph G) = gph G,

from (b) it follows that ϕ is continuous at a point in dom δ(·; gph G). Therefore, by Theorem
4.1, from (4.6) we also have (4.7). Thus, there exists (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) such that (4.8) is
satisfied.

In both the cases, since x̄∗ ∈ ∂μ(x̄) can be taken arbitrarily, by (4.8) we can deduce that

∂μ(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
.

To establish the opposite inclusion, we need to prove that for each element (x∗, y∗) ∈
∂ϕ(x̄, ȳ), the following holds true:

x∗ + D∗G(x̄, ȳ)(y∗) ⊂ ∂μ(x̄).

Taking an arbitrary vector u∗ ∈ x∗ + D∗G(x̄, ȳ)(y∗), we will show that u∗ ∈ ∂μ(x̄). The
inclusion u∗ ∈ x∗ + D∗G(x̄, ȳ)(y∗) yields

u∗ − x∗ ∈ D∗G(x̄, ȳ)(y∗). (4.9)

Condition (4.9) is equivalent to

(u∗ − x∗,−y∗) ∈ N ((x̄, ȳ); gph G)

⇔ (u∗ − x∗,−y∗) ∈ ∂δ((x̄, ȳ); gph G)

⇔ (u∗, 0) ∈ (x∗, y∗) + ∂δ((x̄, ȳ); gph G).

Therefore, we have
(u∗, 0) ∈ ∂ϕ(x̄, ȳ) + ∂δ((x̄, ȳ); gph G).

Under each one of the regularity conditions (a) and (b), using Theorem 4.1, from the last
inclusion we can deduce that

(u∗, 0) ∈ ∂(ϕ + δ(·; gph G))(x̄, ȳ).
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120 D.T.V. An and N.D. Yen

Hence

ϕ(x, y) − ϕ(x̄, ȳ) ≥ 〈u∗, x − x̄〉 + 〈0, y − ȳ〉, ∀(x, y) ∈ gph G. (4.10)

For each fixed element x ∈ dom G, taking infimum on both sides of (4.10) on y ∈ G(x)

and remembering that μ(x̄) = ϕ(x̄, ȳ), we obtain

μ(x) − μ(x̄) ≥ 〈u∗, x − x̄〉.
Since μ(x) = +∞ for all x /∈ dom G, from the last property it follows that u∗ ∈ ∂μ(x̄).
Hence (4.3) is valid.

We are going to obtain (4.4) with the aid of some arguments suggested by the anonymous
referee of this paper. This new proof is much shorter than our original proof. Observe that
x ∈ dom μ if and only if

μ(x) = inf {ϕ(x, y) | y ∈ G(x)} < ∞.

Since the last inequality holds if and only if there exists an y ∈ G(x) with (x, y) ∈ dom ϕ,
we have

δ(x; dom μ) = inf {δ((x, y); dom ϕ) | y ∈ G(x)}. (4.11)

The representation (4.11) for δ(x; dom μ) allows us to get (4.4) as a corollary of (4.3).
Indeed, since dom δ(·; dom ϕ) = dom ϕ, if the regularity requirement in (a) is satis-
fied then int(gph G) ∩ dom δ(·; dom ϕ) �= ∅. Next, if the condition (b) is satisfied then
(x0, y0) ∈ int(dom ϕ); so δ(·; dom ϕ) is continuous at (x0, y0) ∈ gph G. Now, consider
the optimization problem (2.5) with ϕ(x, y) replaced by δ((x, y); dom ϕ). By (4.11), the
corresponding optimal value function μ(x) coincides with δ(x; dom μ). Therefore, in
accordance with (4.3), we have

∂δ(·; dom μ)(x̄) =
⋃

(x∗,y∗)∈∂δ(·;dom ϕ)(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

}
.

The latter yields (4.4) because

∂δ(·; dom μ)(x̄) = N (x̄; dom μ) = ∂∞μ(x̄)

and

∂δ(·; dom ϕ)(x̄, ȳ) = N ((x̄, ȳ); dom ϕ) = ∂∞ϕ(x̄, ȳ)

by Proposition 4.2. �

Here are two simple examples designed to illustrate Theorem 4.2.

Example 4.1 Let X = Y = R and x̄ = 0. Consider the optimal value function μ(x)

in (2.4) with ϕ(x, y) = |y| and G(x) =
{

y | y ≥ 1
2 |x |
}

for all x ∈ R. Then we have

μ(x) = 1
2 |x | for all x ∈ R. So ∂μ(x̄) = [− 1

2 , 1
2 ], ∂∞μ(x̄) = {0}, and M(x̄) = {0}. For

ȳ := 0 ∈ M(x̄), ∂ϕ(x̄, ȳ) = {0} × [−1, 1] and ∂∞ϕ(x̄, ȳ) = {(0, 0)}. Since G is a convex
set-valued mapping, we have
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Applicable Analysis 121

N ((x̄, ȳ); gph G)

=
{
(x∗, y∗) ∈ R

2 | 〈(x∗, y∗), (x, y) − (0, 0)〉 ≤ 0, ∀(x, y) ∈ gph G
}

=
{
(x∗, y∗) ∈ R

2 | y∗ ≤ −2|x∗|
}

and

D∗G(x̄, ȳ)(y∗) =
{[

− 1
2 y∗, 1

2 y∗
]

if y∗ ≥ 0,

∅ if y∗ < 0.

Thus the right-hand sides of (4.3) and of (4.4) can be computed as follows:⋃
(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

} = ⋃
y∗∈[−1,1]

D∗G(x̄, ȳ)(y∗)

=
⋃

y∗∈[−1,1]

[
−1

2
y∗, 1

2
y∗
]

=
[
−1

2
,

1

2

]
,

⋃
(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

} = D∗G(x̄, ȳ)(0) = {0}.

As ∂μ(x̄) = [− 1
2 , 1

2 ] and ∂∞μ(x̄) = {0}, the inequalities (4.3) and (4.4) hold.

Example 4.2 Let X = Y = R and x̄ = 0. Let μ(x) be defined by (2.4) where ϕ(x, y) =
|x | + y for all (x, y) ∈ R

2 and

G(x) =
{{

y | y ≥ −√
x
}

if x ≥ 0,

∅ if x < 0.

We have μ(x) = |x | − √
x for all x ≥ 0, μ(x) = +∞ for all x < 0, and M(x̄) = {0}.

Hence ∂μ(x̄) = ∅ and ∂∞μ(x̄) = (−∞, 0]. For ȳ := 0 ∈ M(x̄), ∂ϕ(x̄, ȳ) = [−1, 1]× {1}
and ∂∞ϕ(x̄, y) = {(0, 0)}. By the convexity of G we have

N ((x̄, ȳ); gph G)

=
{
(x∗, y∗) ∈ R

2 | 〈(x∗, y∗), (x, y) − (0, 1)〉 ≤ 0, ∀(x, y) ∈ gph G
}

= (−∞, 0] × {0};
so D∗G(x̄, ȳ)(0) = (−∞, 0] and D∗G(x̄, ȳ)(y∗) = ∅ for every nonzero y∗. Then we can
calculate the right-hand sides of (4.3) and of (4.4) as follows:⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

} = ⋃
(x∗,y∗)∈[−1,1]×{1}

{
x∗ + D∗G(x̄, ȳ)(y∗)

} = ∅,

⋃
(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ + D∗G(x̄, ȳ)(y∗)

} = D∗G(x̄, ȳ)(0) = (−∞, 0].

As ∂μ(x̄) = ∅ and ∂∞μ(x̄) = (−∞, 0], the inequalities (4.3) and (4.4) are valid.

5. Convex programming problem under functional constraints

We now apply the above general results to convex optimization problems under geometrical
and functional constraints.As in the preceding section, X and Y are Hausdorff locally convex
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122 D.T.V. An and N.D. Yen

topological vector spaces. Consider the problem

min
{
ϕ(x, y) | (x, y) ∈ C, gi (x, y) ≤ 0, i ∈ I, h j (x, y) = 0, j ∈ J

}
, (5.1)

in which ϕ : X ×Y → R is a convex function, C ⊂ X ×Y is a convex set, I = {1, . . . , m},
J = {1, . . . , k}, gi : X × Y → R (i ∈ I ) are continuous convex functions, and h j :
X × Y → R ( j ∈ J ) are continuous affine functions. For each x ∈ X , we put

G(x) = {y ∈ Y | (x, y) ∈ C, gi (x, y) ≤ 0, i ∈ I, h j (x, y) = 0, j ∈ J
}
. (5.2)

It clear that the set-valued map G(·) given by (5.2) is convex and

gph G = C ∩
(⋂

i∈I

�i

)
∩
⎛⎝⋂

j∈J

Q j

⎞⎠ , (5.3)

where �i := {(x, y) | gi (x, y) ≤ 0} (i ∈ I ) and Q j := {(x, y) | h j (x, y) = 0} ( j ∈ J )

are convex sets.
The following statement is a Farkas lemma for infinite dimensional vector spaces.

Lemma 5.1 (See [13, Lemma 1]) Let W be a vector space over R. Let A : W → R
m be a

linear mapping and γ : W → R be a linear functional. Suppose that A is represented in the
form A = (αi )

m
i , where each αi : W → R is a linear functional (i.e. for each x ∈ W , A(x)

is a column vector whose i th component is αi (x), for i = 1, . . . , m). Then, the inequality
γ (x) ≤ 0 is a consequence of the inequalities system

α1(x) ≤ 0, α2(x) ≤ 0, . . . , αm(x) ≤ 0

if and only if there exist nonnegative real numbers λ1, λ2, . . . , λm ≥ 0 such that

γ = λ1α1 + · · · + λmαm .

The following lemma describes the normal cone of the intersection of finitely many
affine hyperplanes.

Lemma 5.2 Let X, Y be Hausdorff locally convex topological vector spaces. Let there be
given vectors (x∗

j , y∗
j ) ∈ X∗ × Y ∗ and real numbers α j ∈ R, j = 1, . . . , m. Set

Q j = {(x, y) | 〈(x∗
j , y∗

j ), (x, y)〉 = α j }.

Then, for each (x̄, ȳ) ∈
m⋂

j=1
Q j , we have

N

⎛⎝(x̄, ȳ);
m⋂

j=1

Q j

⎞⎠ = span{(x∗
j , y∗

j ) | j = 1, . . . , m},

where span{(x∗
j , y∗

j ) | j = 1, . . . , m} denotes the linear subspace generated by the vectors
(x∗

j , y∗
j ), j = 1, . . . , m.

We omit the proof of this lemma, because it can be done quite easily by applying
Lemma 5.1.
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Applicable Analysis 123

The next lemma will play an important role in the subsequent application of Theorem 4.2
for problem (5.1).

Lemma 5.3 (See [11, p.206]) Let f be a proper convex function on X, continuous at a
point x0 ∈ X. Assume that the inequality f (x1) < f (x0) = α0 holds for some x1 ∈ X.
Then,

N (x0;Lα0 f ) = K∂ f (x0),

where Lα0 f := {x | f (x) ≤ α0} is a sublevel set of f and

K∂ f (x0) := {u∗ ∈ X∗ | u∗ = λx∗, λ ≥ 0, x∗ ∈ ∂ f (x0)}
is the cone generated by the subdifferential of f at x0.

Let us go back to considering the parametric convex programming problem (5.1). Our
first result in this section can be formulated as follows.

Theorem 5.1 Suppose that the equality constraints h j (x, y) = 0 ( j ∈ J ) are absent in
(5.1). If at least one of the following regularity conditions

(a1) There exists a point (u0, v0) ∈ dom ϕ such that (u0, v0) ∈ int C and gi (u0, v0) < 0
for all i ∈ I ,

(b1) ϕ is continuous at a point (x0, y0) ∈ C where gi (x0, y0) < 0 for all i ∈ I is
satisfied, then for any x̄ ∈ dom μ, with μ(x̄) �= −∞, and for any ȳ ∈ M(x̄) we
have

∂μ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + Q∗

0

}
(5.4)

and

∂∞μ(x̄) =
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ + Q∗

0

}
, (5.5)

where

Q∗
0 :=
{

u∗ ∈ X∗ | (u∗,−y∗) ∈ N ((x̄, ȳ); C) +
∑

i∈I (x̄,ȳ)

cone ∂gi (x̄, ȳ)

}
(5.6)

with I (x̄, ȳ) := {i | gi (x̄, ȳ) = 0} and cone M := {t z | t ≥ 0, z ∈ M} denoting the
cone generated by M.

Proof Recall that G : X ⇒ Y , with G(x) being defined by (5.2), is a convex set-valued
mapping, and the objective function ϕ(x, y) of (5.1) is convex.

If (a1) is satisfied then it is clear that (u0, v0) ∈ int(gph G), hence the condition (a)
in Theorem 4.2 is fulfilled. If (b1) is satisfied then ϕ is continuous at the point (x0, y0)

which belongs to gph G, so the condition (b) in Theorem 4.2 is fulfilled. Therefore, our
assumptions guarantee that (4.3) and (4.4) hold.
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124 D.T.V. An and N.D. Yen

By the definition of coderivative,

D∗G(x̄, ȳ)(y∗) = {u∗ ∈ X∗ | (u∗,−y∗) ∈ N ((x̄, ȳ); gph G)
}
. (5.7)

Since the constraints h j (x, y) = 0 ( j ∈ J ) are absent in (5.1), formula (5.3) becomes

gph G = C ∩
(⋂

i∈I

�i

)
. (5.8)

If (a1) is satisfied, then (u0, v0) ∈ (int C) ∩ (⋂i∈I int �i
)
. If (b1) is valid, then (x0, y0) ∈

C ∩ (⋂i∈I int �i
)
. So, in both the cases we can use Proposition 4.1 and formula (5.8) to

compute the normal cone to gph G at (x̄, ȳ) as follows

N ((x̄, ȳ); gph G) = N ((x̄, ȳ); C) +
∑
i∈I

N ((x̄, ȳ);�i ).

Since N ((x̄, ȳ);�i ) = {(0, 0)} for every i /∈ I (x̄, ȳ), this formula can be written in the
equivalent form

N ((x̄, ȳ); gph G) = N ((x̄, ȳ); C) +
∑

i∈I (x̄,ȳ)

N ((x̄, ȳ); �i ). (5.9)

By Lemma 5.3, for every i ∈ I (x̄, ȳ) we have

N ((x̄, ȳ);�i ) = K∂gi (x̄,ȳ) = cone ∂gi (x̄, ȳ).

Combining this with (5.6), (5.7), and (5.9), we get (5.4) from (4.3) and (5.5) from (4.4).
The proof is complete. �

We now consider the case where the affine constraints h j (x, y) = 0 ( j ∈ J ) are
available in (5.1). The second result of this section reads as follows.

Theorem 5.2 For every j ∈ J , let h j (x, y) = 〈(x∗
j , y∗

j ), (x, y)〉 − α j , where (x∗
j , y∗

j ) ∈
X∗×Y ∗ and α j ∈ R ( j ∈ J ). If ϕ is continuous at a point (x0, y0) ∈ int C with gi (x0, y0) <

0 for all i ∈ I and h j (x0, y0) = 0 for all j ∈ J , then for any x̄ ∈ dom μ, with μ(x̄) �= −∞,
and for any ȳ ∈ M(x̄) we have

∂μ(x̄) =
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

{
x∗ + Q∗} (5.10)

and

∂∞μ(x̄) =
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

{
x∗ + Q∗}, (5.11)

where

Q∗ :=
{

u∗ ∈ X∗ | (u∗,−y∗) ∈ N ((x̄, ȳ); C)

+
∑

i∈I (x̄,ȳ)

cone ∂gi (x̄, ȳ) + span{(x∗
j , y∗

j ), j ∈ J }
}
.
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Applicable Analysis 125

Proof (This proof follows the same scheme as the proof of Theorem 5.1.) For the
set-valued map G(·) defined by (5.2), we have (x0, y0) ∈ gph G. Hence the condition
(b) in Theorem 4.2 is satisfied, and we know that (4.3) and (4.4) hold. By our assumptions,

(u0, v0) ∈ (int C) ∩
(⋂

i∈I

int �i

)
∩
⎛⎝ k⋂

j=1

Q j

⎞⎠ .

Therefore, according to Proposition 4.1 and formula (5.3) we have

N ((x̄, ȳ); gph G) = N ((x̄, ȳ); C) +
∑
i∈I

N ((x̄, ȳ); �i ) + N

⎛⎝(x̄, ȳ);
k⋂

j=1

Q j

⎞⎠ .

Since N ((x̄, ȳ);
k⋂

j=1
Q j ) = span

{
(x∗

j , y∗
j ) | j ∈ J

}
by Lemma 5.2,

N ((x̄, ȳ);�i ) = cone ∂gi (x̄, ȳ)

for every i ∈ I (x̄, ȳ) by Lemma 5.3, and since N ((x̄, ȳ);�i ) = {(0, 0)} for every i /∈
I (x̄, ȳ), this formula can be written in the form

N ((x̄, ȳ); gph G) = N ((x̄, ȳ); C) +
∑

i∈I (x̄,ȳ)

N ((x̄, ȳ);�i ) + span
{
(x∗

j , y∗
j ) | j ∈ J

}
.

(5.12)

Using (5.7), (5.12), and the definition of Q∗, we easily get (5.10) from (4.3), (5.11) and
from (4.4). �

6. Comparisons with some known results

6.1. Comparisons with the results of Aubin [1]

Recall that if X is a Hausdorff locally convex topological vector space, f : X → R is a
function having values in the extended real line, then the function f ∗ : X∗ → R given by

f ∗(x∗) = sup
x∈X

[〈x∗, x〉 − f (x)
]
, x∗ ∈ X∗, (6.1)

is said to be the conjugate function of f . The conjugate function of f ∗, denoted by f ∗∗, is
a function defined on X and having values in R:

f ∗∗(x) = sup
x∗∈X∗

[〈x∗, x〉 − f ∗(x∗)
]

(x ∈ X).

Clearly, the function f ∗∗ is convex and closed (in the sense that epi f ∗∗ is closed in the
weak topology of X ×R or, the same, f ∗∗ is lower semicontinuous w.r.t. the weak topology
of X ). According to the Fenchel–Moreau theorem (see [11, Theorem 1, p.175]), if f is a
function on X everywhere greater than −∞, then f = f ∗∗ if and only if f is closed and
convex.

By a different approach,Aubin [1, Problem 35 – Subdifferentials of Marginal Functions,
p.335] has studied a problem similar to that one considered in the preceding two sections.
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126 D.T.V. An and N.D. Yen

Namely, in our notation, Aubin has studied the parametric problem:

(Px ) min{ϕ(y) | y ∈ G(x)},
where X, Y are Hilbert spaces, ϕ : Y → R ∪ {+∞} is a proper, convex, lower semicontin-
uous function, G : X ⇒ Y is convex, of closed graph. The optimal value function of that
problem is given by

μ(x) = inf {ϕ(y) | y ∈ G(x)}. (6.2)

Using the notion of conjugate function, the above Fenchel–Moreau theorem, and some
auxiliary results related to continuous linear mappings, convex functions, and convex sets
on Hilbert spaces, Aubin has proved the following theorem.

Theorem 6.1 (See [1, p.335]) Assume that

0 ∈ int(dom ϕ − dom G−1), (6.3)

and that ȳ ∈ G(x̄) is a solution of (Px̄ ). Then, x∗ ∈ ∂μ(x̄) if and only if there exists
y∗ ∈ ∂ϕ(ȳ) such that

(−y∗, x∗) ∈ N ((ȳ, x̄); gph G−1),

or

(x∗,−y∗) ∈ N ((x̄, ȳ); gph G).

Hence,

∂μ(x̄) = D∗G(x̄, ȳ)(∂ϕ(ȳ)).

The proof of Aubin is long and rather complicated. The requirements that ϕ is lower
semicontinuous and gph G is closed are really needed in Aubin’s proof.

The next two claims clarify the connections between the regularity conditions in
Theorem 4.2 and the regularity condition in Theorem 6.1.

Claim 1 The regularity condition (a) in Theorem 4.2 implies the regularity condition
(6.3).

Indeed, if (a) is fulfilled, then there exist (x0, y0) ∈ gph G with y0 ∈ dom ϕ and
U ∈ N (0X ), V ∈ N (0Y ), U and V are open sets, such that

(x0 + U ) × (y0 + V ) ⊂ gph G,

that is for any x ∈ x0+U and y ∈ y0+V, y ∈ G(x). Hence x ∈ G−1(y), for all x ∈ x0+U
and y ∈ y0 + V . In particular, y0 + V ⊂ dom G−1. As y0 ∈ dom ϕ, it follows that

0 ∈ −V = y0 − (y0 + V ) ⊂ dom ϕ − dom G−1. (6.4)

Since V is open and 0 ∈ V , −V is open and 0 ∈ −V . Then −V ∈ N (0). So (6.4) implies
that 0 ∈ int(dom ϕ − dom G−1); hence (6.3) holds true.

Claim 2 The regularity condition (b) in Theorem 4.2 also implies the regularity condition
(6.3).
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Applicable Analysis 127

Indeed, suppose that ϕ is continuous at such a point y0 that there is x0 ∈ X with
(x0, y0) ∈ gph G. Then, for every ε > 0, there exists V ∈ N (0) such that

|ϕ(y0 + v) − ϕ(y0)| < ε, ∀v ∈ V .

It follows that y0 + V ⊂ dom ϕ. Since y0 ∈ G(x0), x0 ∈ G−1(y0). So we have

0 ∈ V = (y0 + V ) − y0 ⊂ dom ϕ − dom G−1;
thus (6.3) is valid.

6.2. Comparisons with the results of Mordukhovich et al. [8]

The assertions of Theorem 4.2 are similar to those of the three theorems of Mordukhovich
et al. [8] which have been recalled in Section 3. By imposing the strong convexity require-
ment on (2.5), we need not to rely on the assumption ∂̂+ϕ(x̄, ȳ) �= ∅ in Theorem 3.1, the
condition saying that the solution map M : dom G ⇒ Y has a local upper Lipschitzian
selection at (x̄, ȳ) in Theorem 3.2, as well as the μ-inner semicontinuity and the μ-inner
semicompactness conditions on the solution map M(·), in Theorem 3.3.
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