
Nonlinear Dynamics 
Volume 1 / 1990 - Volume 64 / 2011

Volume 63, Numbers 1-2 / January 2011 
Viewing all 23 articles 

1-17ORIGINAL PAPER

Study of the inertial effect and the nonlinearities of the CRONE suspension based on the 
hydropneumatic technology
Roy Abi Zeid Daou, Clovis Francis and Xavier Moreau

Download PDF (2.3 MB) Show Summary

19-33ORIGINAL PAPER

Virtual orbits and two-parameter bifurcation analysis in a ZAD-controlled buck converter
Viktor Avrutin, Enric Fossas, Albert Granados and Michael Schanz

Download PDF (771.9 KB) Show Summary

35-49ORIGINAL PAPER

Nonlinear dynamics of a new electro-vibro-impact system
Jee-Hou Ho, Van-Du Nguyen and Ko-Choong Woo

Download PDF (2.3 MB) Show Summary

51-60ORIGINAL PAPER

Control of vibroimpact dynamics of a single-sided Hertzian contact forced oscillator
Amine Bichri, Mohamed Belhaq and Joël Perret-Liaudet

Download PDF (3.3 MB) Show Summary

61-82ORIGINAL PAPER

Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical 
shell
Paulo B. Gonçalves, Frederico M. A. Silva, Giuseppe Rega and Stefano Lenci

Download PDF (3.8 MB) Show Summary

83-94ORIGINAL PAPER

Detecting stable–unstable nonlinear invariant manifold and homoclinic orbits in 
mechanical systems

Page 1 of 4SpringerLink - Nonlinear Dynamics, Volume 63, Numbers 1-2

5/22/2011http://www.springerlink.com/content/0924-090x/63/1-2/?target=print



Stefano Lenci and Giuseppe Rega

Download PDF (443.5 KB) Show Summary

95-104ORIGINAL PAPER

Nonlinear modelling of chemostat model with time delay and impulsive effect
Zhong Zhao, Xiuquan Zhang and Lansun Chen

Download PDF (628.3 KB) Show Summary

105-123ORIGINAL PAPER

Adaptive fuzzy control of uncertain MIMO non-linear systems in block-triangular forms
Tieshan Li, Dan Wang and Naxin Chen

Download PDF (970.3 KB) Show Summary

125-134Natural frequencies of nonlinear vibration of axially moving beams
Hu Ding and Li-Qun Chen

Download PDF (1.1 MB) Show Summary

135-147ORIGINAL PAPER

Oscillations of a beam with a time-varying mass
A. K. Abramyan and S. A. Vakulenko

Download PDF (427.0 KB) Show Summary

149-157ORIGINAL PAPER

Dynamic analysis of rubber-like material using absolute nodal coordinate formulation 
based on the non-linear constitutive law
Sung Pil Jung, Tae Won Park and Won Sun Chung

Download PDF (564.9 KB) Show Summary

159-169ORIGINAL PAPER

Vibration control by nonlocal feedback and jerk dynamics
Attilio Maccari

Download PDF (389.8 KB) Show Summary

171-181ORIGINAL PAPER

Intelligent quadratic optimal synchronization of uncertain chaotic systems via LMI 
approach
Chaio-Shiung Chen and Heng-Hui Chen

Download PDF (624.9 KB) Show Summary

183-192ORIGINAL PAPER

Robust stability of uncertain piecewise-linear systems: LMI approach
Abdallah BenAbdallah, Mohamed Ali Hammami and Jalel Kallel

Page 2 of 4SpringerLink - Nonlinear Dynamics, Volume 63, Numbers 1-2

5/22/2011http://www.springerlink.com/content/0924-090x/63/1-2/?target=print



Download PDF (396.1 KB) Show Summary

193-203ORIGINAL PAPER

Multiple scales analysis of wave–wave interactions in a cubically nonlinear monoatomic 
chain
Kevin Manktelow, Michael J. Leamy and Massimo Ruzzene

Download PDF (480.3 KB) Show Summary

205-215ORIGINAL PAPER

The monotonicity and critical periods of periodic waves of the φ6 field model
Aiyong Chen, Jibin Li and Wentao Huang

Download PDF (830.3 KB) Show Summary

217-222ORIGINAL PAPER

Topological chaos of universal elementary cellular automata rule
Weifeng Jin and Fangyue Chen

Download PDF (289.6 KB) Show Summary

223-237ORIGINAL PAPER

Hopf bifurcation and spatio-temporal patterns in delay-coupled van der Pol oscillators
Yongli Song

Download PDF (922.7 KB) Show Summary

239-252ORIGINAL PAPER

Secure communication based on chaotic synchronization via interval time-varying delay 
feedback control
O. M. Kwon, Ju H. Park and S. M. Lee

Download PDF (1.0 MB) Show Summary

253-262ORIGINAL PAPER

Variable structure based robust backstepping controller design for nonlinear systems
Chao-Chung Peng, Albert Wen-Jeng Hsue and Chieh-Li Chen

Download PDF (1.5 MB) Show Summary

263-275ORIGINAL PAPER

Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by 
adaptive control
Xian-Feng Li, Andrew Chi-Sing Leung, Xiu-Ping Han, Xiao-Jun Liu and Yan-Dong Chu

Download PDF (1.9 MB) Show Summary

277-283ORIGINAL PAPER

Chaos synchronization of discrete-time dynamic systems with a limited capacity 
communication channel

Page 3 of 4SpringerLink - Nonlinear Dynamics, Volume 63, Numbers 1-2

5/22/2011http://www.springerlink.com/content/0924-090x/63/1-2/?target=print



Nonlinear Dyn (2011) 63: 35–49
DOI 10.1007/s11071-010-9783-6

O R I G I NA L PA P E R

Nonlinear dynamics of a new electro-vibro-impact system

Jee-Hou Ho · Van-Du Nguyen · Ko-Choong Woo

Received: 21 January 2010 / Accepted: 11 July 2010 / Published online: 8 August 2010
© Springer Science+Business Media B.V. 2010

Abstract A variety of nonlinear dynamic responses
for a new electro-vibro-impact system is presented,
with indication of chaotic behavior. By mathematical
modeling of the physical system, an insight is obtained
to the global system dynamics. The modeling has es-
tablished a good correlation with experimental data,
and hence can be used as a numerical tool to optimize
the system dynamics. In particular, with respect to im-
pact forces and progression rate, may then be achieved
with minimal computational cost.
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1 Introduction

Applications of vibro-impact mechanical systems oc-
cur in many branches of technology such as percussive
drilling, ultrasonic machining and ground moling [1].
Such systems are inherently nonlinear due to the pres-
ence of the non-smooth or discontinuous system char-
acteristics. Despite the fact that some systems are rela-
tively simple in its structure, very complex system dy-
namics have been revealed. Examples of such systems
are piecewise linear impact oscillators [2–4], whereby
its behavior may vary from periodic to chaotic motion.
Peterka [5, 6] studied the bifurcations and transition
phenomena in mechanical systems with impacts.

Due to the complexity of vibro-impact systems,
a combination of analytical and numerical methods
was used in several studies. A precise mathemati-
cal model is required in order to study the qualita-
tive dynamic responses of the system. Wiercigroch [7]
showed two methods to model dynamical systems
with discontinuities. The first approach is to model
the system using discontinuous functions. Global so-
lution is obtained by “gluing” local solutions obtained
by solving the problem in the continuous subspaces.
The second approach uses smoothening functions to
model discontinuous systems. Pavlovskaia et al. [8, 9]
developed a semi-analytical method to compute peri-
odic solutions for an impact oscillator with a drift. The
motion could be subdivided into a sequence of dis-
tinct phases whereby the analytical solution for each
phase is known. Chatterjee et al. [10] applied the har-
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monic balance method to study a model of the impact
damper containing symmetric stops. Both elastic and
inelastic collisions were analyzed and refined numeri-
cally. Barrientos and Baeza [11] simulated the impact
between two rigid bodies. Simulations, in the form of
animations of objects in impact, were completed using
a Runge–Kutta method in Matlab. Hinrichs et al. [12,
13] investigated two types of non-smooth oscillators,
including an impact oscillator and a self-sustained
friction oscillator. Time histories, bifurcation diagrams
and Poincaré maps of the systems were determined
experimentally and compared with numerical inte-
gration. Davis and Virgin [14] studied the simulated
and experimental responses of a rigid-arm pendulum
driven by an external impactor. A variety of qualitative
responses of the system was observed through phase
portrait, Poincaré maps, power spectra and bifurcation
analysis. Batako, Lalor and Piiroinen [15] studied the
dynamical behavior of a friction-driven vibro-impact
system. To avoid the complexity of dealing with two
discontinuous nonlinear forces (dry friction and im-
pact), the dynamical response of the system without
impact was investigated. The system equations of mo-
tion were solved numerically through a simulation
method proposed by Piiroinen and Kuznetsov [16],
which could be applied to piecewise smooth dynam-
ical systems, particularly on systems with sliding mo-
tions.

This paper presents a numerical investigation into
the dynamic responses of a new electro-vibro-impact
system, which is suitable for ground moling applica-
tion. The system is studied experimentally by Nguyen
et al. [17]. Studies by Barkan [18] and Rodger et al.
[19] revealed that vibro-impact systems produce a
combination of vibration and impact and are able to
achieve better soil penetration. The main aim of this
paper is to identify the qualitative motion most suit-
able for the forward progression of the mechanism
against resistive forces such as friction and soil resis-
tance. Experimentation has identified period one mo-
tion and suitable operating frequencies [20]. However,
for implementation in actual soil conditions, precise
optimization would require a numerical tool to predict
operating parameters at a minimal computational ex-
pense. More work may be done by a continuation of
the theoretical work of Pavlovskaia et al. [3] and Wier-
cigroch et al. [4, 7, 21, 22] so as to finally achieve a
real-time control strategy.

The new invention involves the use of a linear self-
oscillation inductance motor of Mendrela [23, 24]. By

placing a stop in the path of bar oscillations, impacts
are generated. The electro-magnetic forces within the
solenoid are dependent on the position of the bar, and
function as nonlinear restoring forces. Hence, vibra-
tion of the mechanism is possible, which would be
particularly useful in cohesionless soils. To address
the issue of heat generated by the solenoid and metal
bar, a solid state relay was used to switch a series
RLC circuit on and off in accordance to a function
generator [25]. Impact forces were substantially in-
creased.

The establishment of a mathematical model in the
present piece of work is an important milestone in
the development of the electro-vibro-impact system.
Deployment in the field would require an adaptive
means of ensuring a constant forward velocity un-
der varying soil conditions. One option would be to
generate approximate analytical solutions to the math-
ematical equations of motion to complement a con-
trol strategy. In example of such an approach would
be the treatment given to the impact oscillator by
Woo et al. [26]. A systematic methodology of eval-
uating unknown coefficients numerically was pre-
sented. The modeling done here derived important
ideas from Pavlovskaia et al. [27] and Wiercigroch
[28]. By describing the frictional characteristics of
the aluminium rails, analytical solutions may then be
sought. Semi-analytical solutions have been sought
for a similar system by Pavlovskaia and Wiercigroch
[9], while maps have been derived by Pavlovskaia
et al. [29]. Dimensional reduction for mapping has
been treated in detail by Wiercigroch and Pavlovskaia
[30]. With the present model, it is now possible to
explore methods of classification, perhaps in the man-
ner of Błażejczyk-Okolewska et al. [31]. Czolczynski
and Kapitaniak [32] have recognized the direct in-
fluence on system response by the parameters, and
the rich dynamical phenomenon, such as those ob-
served by de Souza et al. [33] and Wiercigroch et al.
[34] may be either exploited or avoided. Lenci and
Rega [35] have presented an important approach to
the analysis of an impact system, and their work in
control [36] is an avenue to be explored in future
work.

In this paper, the mathematical modeling of this
new system is followed by numerical integration, us-
ing Dynamics [37] software. A variety of system re-
sponses are presented, indicating the practicality of the
computational tool for optimization of the mechanism
when deployed in soil conditions.
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Fig. 1 Physical model of the mechanical part of the new vi-
bro-impact system

2 Mathematical modeling

The physical model of the solenoid vibro-impact
mechanism is shown in Fig. 1. The mechanical sys-
tem is made up of two masses: the mass of the metal
bar, m1 and mass, m2 corresponding to the total mass
of the moving board and all remaining components
placed on it. The relative motion of two masses, m1,
and m2, generates nonlinear magnetic force inside the
solenoid, Fm, linear viscous damping force, charac-
terized by the damping coefficient c, and dry friction
force, Ff 1. The magnetic force is induced when the
solid state relay switches the power on whereas the
spring force of stiffness k1 acts on both masses m1

and m2. Displacements of the bar, X1 and of the board,
X2, are chosen as mechanical coordinates of the sys-
tem. To model impacts of the metal bar upon the ob-
stacle block, a spring of stiffness, k0, is incorporated
in the system. When the relative displacement of the
bar with respect to the displacement of the board, X

(X = X1 − X2), is greater than the clearance, G, the
impact occurs. Finally a force, Ff 2, models dry fric-
tion between the board and the rails.

Thus system can operate at the time in one of two
different regimes listed below. The first regime occurs
when the bar is not in contact with the obstacle block,
i.e. X1 − X2 < G. The equations of motion for this
regime are

m1Ẍ1 = Fm − Ff 1 − c
(
Ẋ1 − Ẋ2

) − Fspr,

m2Ẍ2 = −Fm + Ff 1 + c
(
Ẋ1 − Ẋ2

) + Fspr − Ff 2,
(1)

where dot denotes differentiation with respect to time,
t . Once the relative displacement of the masses ex-
ceeds the clearance, X1 − X2 ≥ G, the impact of the

bar upon the block occurs and it is described as

m1Ẍ1 = Fm − Ff 1 − c
(
Ẋ1 − Ẋ2

)

− Fspr − k0(X1 − X2 − G),

m2Ẍ2 = −Fm + Ff 1 + c
(
Ẋ1 − Ẋ2

) + Fspr

+ k0(X1 − X2 − G) − Ff 2.

(2)

Here, the dry friction forces Ff 1 and Ff 2 are calcu-
lated as

Ff 1 = μ1m1g sgn
(
Ẋ1 − Ẋ2

)
,

Ff 2 = μ1(m1 + m2)g sgn
(
Ẋ2

)
,

(3)

where μ1 and μ2 are appropriate frictional coefficients
and g is the acceleration due to gravity.

The restoring force, Fspr, of the additional spring is
calculated as

Fspr = k1(X1 − X2 − X0), (4)

where X0 is the equilibrium position of the additional
coil spring when it is uncompressed.

The coupling between the mechanical system and
electrical circuit is described by a nonlinear magnetic
force, Fm, which is generated in the solenoid and de-
pends on the characteristics of the electrical circuits,
as will be explained.

The equation describing the electric circuit dynam-
ics can be expressed as

dψ

dt
+ Ri + 1

C

∫
i dt = V (t), (5)

where ψ is the magnetic flux in the solenoid and
ψ = Li, L is the solenoid inductance, i is the current,
R is the resistance, C is the capacitance, and V (t) is
the externally supplied time dependent voltage. As the
solenoid has the movable core (metal bar oscillating
inside the solenoid), its inductance depends on the rel-
ative displacement between the bar and the board,

L = L
(
X1(t) − X2(t)

)
. (6)

Thus, introducing notation for the relative displace-
ment, X = X1 − X2, we have L = L(X), and

dψ

dt
= i

∂L

∂x

(
Ẋ1 − Ẋ2

) + L
di

dt
. (7)

Substituting (7) into (5) we have

i
∂L

∂x

(
Ẋ1 − Ẋ2

) + L
di

dt
+ Ri + 1

C

∫
i dt = V (t). (8)
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Fig. 2 Variation of the
inductance of the solenoid
approximated by a
Gaussian and cosine fit

Finally, differentiating (7) with respect to time to
eliminate an integral, the equation of the circuit is ob-
tained as

L
d2i

dt2
+

[
R + 2

∂L

∂X

(
Ẋ1 − Ẋ2

)]di

dt

+
[

1

C
+ ∂2L

∂X2

(
Ẋ1 − Ẋ2

)2

+ ∂L

∂X

d2X

dt2

]
i

= dV (t)

dt
. (9)

In this equation describing the current, the depen-
dence of the inductance of the coils on the relative dis-
placement (the unknown function L(X)) is adopted in
a Gaussian form

L(X) = L0 + A

σ
√

π/2
e−2(X/σ)2

, (10)

where L0 is the inductance of the solenoid without the
bar, A is a coefficient of the function, e is the base of
natural logarithm and σ is a standard deviation.

A reference form of the inductance of a solenoid is
the one made by Mendrela [23, 24]

L(X) = Lmax − Lmin

2

[
1 + cos

(
πX

λ

)]
+ Lmin, (11)

where Lmax is inductance of the solenoid with the
metal bar placed in the center of the coil, Lmin is in-

ductance of the solenoid without the bar, and λ is the
length of the solenoid.

It has been found that the Gaussian form is fitted
measured inductance data better than the cosine form,
as can be seen in Fig. 2. Consequently, the Gaussian
form of the inductance is used in this study.

Externally supplied voltage has been chosen as a
typical sinusoidal form, V (t) = Vs sin(Ωt), where Vs

is the voltage amplitude and Ω is the frequency of
power supply. Hence, the right side of (9) can be
rewritten as

dV (t)

dt
= ΩVs cos(Ωt). (12)

Using a solid state relay, the power supplying the
solenoid is switched on and off periodically with a fre-
quency of Fctr. Consequently, a factor, Pctr, reflecting
the voltage variation is used and (9) can be rewritten
in the form

L
d2i

dt2
+

[
R + 2

∂L

∂X

(
Ẋ1 − Ẋ2

)]di

dt

+
[

1

C
+ ∂2L

∂X2

(
Ẋ1 − Ẋ2

)2 + ∂L

∂X

d2X

dt2

]
i

= ΩPctrVs cos(Ωt). (13)

The factor of control frequency, Pctr, can be ex-
pressed as following. Since the control signal is a rec-
tangular waveform with a frequency of Fctr and the
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solid state relay will switch the power on when the sig-
nal is positive, the variation of Pctr can be represented
in the form

Pctr =
{

1, if t
(
mod 1

Fctr

)
< 1

2Fctr
,

0, otherwise,
(14)

where Pctr is a dimensionless term and Fctr has the unit
of Hz. Substituting dX

dt
= Ẋ1 − Ẋ2 into (13) we obtain

L
d2i

dt2
+

[
R + 2

∂L

∂X

dX

dt

]
di

dt

+
[

1

C
+ ∂2L

∂X2

(
dX

dt

)2

+ ∂L

∂X

d2X

dt2

]
i

= ΩVs cos(Ωt). (15)

To complete the mathematical description of the
system, a nonlinear magnetic force, Fm, has to be de-
fined. From an energy conservation principle [38], the
equation describing the magnetic force in the solenoid
with the movable core can be derived considering the
stored magnetic energy inside the solenoid as

Fm = 1

2
i2 ∂L

∂X
. (16)

Thus the coupled equations of the system are finally
derived in the form

m1Ẍ1 = 1

2
i2 ∂L

∂X
− μ1m1g sgn

(
Ẋ1 − Ẋ2

)

− c
(
Ẋ1 − Ẋ2

) − k1(X1 − X2 − X0)

− k0(X1 − X2 − G)H(X1 − X2 − G),

m2Ẍ2 = −1

2
i2 ∂L

∂X
+ μ1m1g sgn

(
Ẋ1 − Ẋ2

)

+ c
(
Ẋ1 − Ẋ2

) + k1(X1 − X2 − X0)

+ k0(X1 − X2 − G)H(X1 − X2 − G)

− μ2(m1 + m2)g sgn
(
Ẋ2

)
,

L
d2i

dt2
+

[
R + 2

∂L

∂X

dX

dt

]
di

dt

+
[

1

C
+ ∂2L

∂X2

(
dX

dt

)2

+ ∂L

∂X

d2X

dt2

]
i

= ΩPctrVs cos(Ωt),

(17)

where H(.) is Heaviside step function defined as

H(x) =
{

1, if x > 0

0, if x ≤ 0,
(18)

and the function L(X) is described by (10).

3 Simulation

Equations (17) have been rewritten as a system of first
order differential equations and then solved using Dy-
namics software [37]. The obtained results are com-
pared with experimental results.

In the case of impact, both X1 and X2 will gradu-
ally increase over time (since the moling machine will
progress forward). In order to facilitate the study of
bifurcation and phase plane analysis, relative displace-
ment and relative velocity of X1 and X2 were chosen
as two of the variables.

Let u and v be the relative displacement and rela-
tive velocity of the metal bar and the moling machine
respectively, where

u = X1 − X2,

v = Ẋ1 − Ẋ2.
(19)

Equations (17) can be rewritten as a system of first
order ordinary differential equations as follow:

u′ = v,

v′ =
(

1

m1
+ 1

m2

)[
1

2
y2 ∂L

∂u
− μ1m1g sgn(v)

− k0(u − G)H(u − G) − cv − k1(u − X0)

]
,

w′ = x,

x′ = 1

m2

[
−1

2
y2 ∂L

∂u
+ μ1m1g sgn(v)

+ k0(u − G)H(u − G) + cv

+ k1(u − X0) − μ2(m1 + m2)g sgn(x)

]
,

y′ = z,

z′ = 1

L

[
ΩPctrVs cos(Ωt) −

(
R + 2

∂L

∂u
v

)
z

=
(

1

C
+ ∂2L

∂u2
v2 + ∂L

∂u
v′

)
y

]
.

(20)
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The state variables are

u relative displacement of the metal bar
with respect to the mole

v relative velocity of the metal bar
with respect to the mole

w displacement of the mole
x velocity of the mole
y current, and
z first derivative of the current.

The experimental results were obtained with set of
parameters as following.

First parameters of the RLC circuit and, in partic-
ular, the solenoid were identified. The minimal induc-
tance, L0, was measured as 0.1658 H, and the resis-
tance of the solenoid was measured as R = 27.5 �.
The inductance of the solenoid was measured and then
fitted to the Gaussian form of (10) with the coefficient
A = 0.02494 and the standard deviation σ = 0.0483.

The mass of the metal bar oscillating inside the
solenoid was measured as 0.297 kg, whereas the to-
tal weight of the board with all components placed
on it excluding the metal bar is 2.94 kg. The gap be-
tween the solenoid and the stop was maintained at
−2 mm. This distance was experimentally found to be
suitable for generation of the bar oscillations which
caused substantial impacts. The stiffness of the ad-
ditional spring was measured as k1 = 200 N/m. The
balance position of the support spring was set to be
X0 = −22 mm.

The impact stiffness can be estimated from the ex-
perimental results by using the principle of work done
and energy. The total work done on the metal bar by
the magnetic force and the frictional force when it
moves from the position just before the impact, de-
noted as x10, to the position where the stop has the
maximum compression (i.e. X1 − X2 − G is maxi-
mum), denoted as x11, is equivalent to the change in
the kinetic energy of the metal bar, the change in the
potential energy stored in the spring and the change in
the potential energy stored in the stop. The equation is
as follows:
∫ x11

x10

Fm d(X1) +
∫ x11

x10

Ff 1 d(X1)

= 1

2
m1

(
ẋ2

11 − ẋ2
10

) + 1

2
k1

(
x2

11 − x2
10

)

+ 1

2
k0

(
x2

11 − x2
10

)
. (21)

However, due to the very small compression of the
stop, work done by the magnetic force and the fric-
tional force in that interval is small compared to the
change in the kinetic energy of the metal bar and the
potential energy stored in the stop. The change in the
spring potential energy is also small since k1 is esti-
mated to be 200 N/m only. Therefore the impact stiff-
ness can be estimated by the following expression:

k0 = m1(ẋ
2
10 − ẋ2

11)

x2
11 − x2

10

. (22)

The velocity of the metal bar at the position x10 was
estimated by calculating the derivative of 5 consecu-
tive linear variable displacement transducer (LVDT)
data points and the averaged value was used. The ve-
locity of the metal bar at the position x11 was taken
as zero. The impact stiffness was then estimated to be
1.24 × 105 N/m.

The simulation results were obtained by using the
parameter values as the same as in experiments. In ad-
dition, the frictional coefficient between the bar and
the solenoid μ1 was approximately measured when
the bar was oscillating at the applied root-mean-square
(RMS) voltage of 58 V (Vs = √

2Vrms = 82.02 V)
and the capacitance in the circuit equal to 32 µF. It
was then adjusted to match the experimental result in
the same condition, so it was finally determined as
μ1 = 0.295. The frictional coefficients between the
board and the rails was found to be approximately
μ2 = 0.235. It was determined using a force consid-
eration on the board which was moving slowly at con-
stant speed. To achieve such slow motion one end of a
string was attached to the board while a certain weight
was fixed on its other end hanging over the exper-
imental table and causing the rig to move forward.
In this case the frictional force acting on the board
was balanced by the tension force in the string de-
pendent on the hanging weight and thus allowing for
the estimation of the friction coefficient. Finally, in the
numerical model, the dissipation coefficient is set at
c = 0.155 kg/s.

A comparison was made between experimental
data and predictions made with the new mathemati-
cal model. For a function generator signal of 2.5 Hz,
3 Hz, 5 Hz, 7 Hz, 8 Hz, 9 Hz and 13 Hz, time histories
were plotted in the first instance. To further confirm
the topology, phase planes of the steady-state motion
were constructed. The equations of motion were nu-
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Fig. 3 Relative displacement-time history of the metal bar for a frequency of the control signal of 5 Hz obtained from (a) experiment,
(b) numerical integration, (c) 1 second of the experiment and (d) 1 second of the numerical integration

merically integrated with Dynamics [37] software to
scrutinize the time histories. Prior to this, it had al-
ready been experimentally observed that there was a
range of working frequencies within which the for-
ward progression was the fastest. When the supplied
RMS voltage was 58 V, typically, the frequencies were
slightly less than 10 Hz. For frequencies of 5 Hz,
7 Hz and 8 Hz, the qualitative dynamics have been
captured by the model. In Fig. 3(a), the amplitude
of the motion alternates between two values in the
laboratory. This response has been numerically pre-
dicted in Fig. 3(b). The similarity in the amplitudes
has been achieved by setting the damping coefficient,
c, to a value of 0.155 kg/s. This has been the same
value used in numerical predictions, to ensure consis-

tency. By inspecting a shorter range of time from the
third to the fourth second, the numerical computation
of Fig. 3(d) shows a close correlation to the ampli-
tude variation of Fig. 3(c). Small vertical spikes ob-
served in Fig. 3(c), contributed by laboratory noise,
are not found in Fig. 3(d). Half of the experimental
waveform is rounded at a local maxima. However,
this has not been forecast by the mathematical model.
The local minima have also been flattened. For this
set of parameter values, the qualitative dynamics have
been accurately portrayed, and quantitative amplitudes
have also been well-described. Detail pertaining to
the shape of the waveform still need to be portrayed.
This may be achieved with further refinement of the
model.
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Fig. 4 Relative displacement-time history of the metal bar for a frequency of the control signal of 7 Hz obtained from (a) experiment,
(b) numerical integration, (c) 1 second of the experiment and (d) 1 second of the numerical integration

On increasing the frequency to 7 Hz, a periodic
motion is observed in Fig. 4(a). The amplitude of mo-
tion is nearly the same. However, it varies in such
a way that it would increase, and then decrease,
before repeating itself again. This phenomenon has
also been illustrated by the mathematical model in
Fig. 4(b). The amplitude of bar oscillations, however,
exhibit more variation and a larger minimum ampli-
tude. The discrepancy in amplitude is highlighted in
Fig. 4(c) and (d). The frequency of 8 Hz is close
to an optimum operating frequency, as reported by
Nguyen and Woo [25]. A synchronous periodic mo-
tion is noted in Fig. 5(c). The steady-state solution
to the mathematical model describes this quite well
in Fig. 5(d). On a longer time-scale, both Fig. 5(a)

and (b) illustrate a small variation in amplitude, es-
pecially the former. This change about a mean value
might have been caused by additional friction in-
duced by the linear variable displacement transducer
(LVDT). Other sources of variable frictional char-
acteristics are the rough surface of laminated metal
bar.

The irregular motion, suggestive of chaos, had been
observed in the laboratory for lower frequencies. For
example, at a frequency of 2.5 Hz, an interesting wave-
form is shown in Fig. 6(a). The haphazard nature of
this response has the following characteristics: it drops
to smaller amplitudes at irregular instants in time, and
indicates higher harmonics during these smaller am-
plitudes. Figure 6(b) simulates the trajectory for the
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Fig. 5 Relative displacement-time history of the metal bar for a frequency of the control signal of 8 Hz obtained from (a) experiment,
(b) numerical integration, (c) 1 second of the experiment and (d) 1 second of the numerical integration

same set of system parameter values. Some of the ir-
regularity in motion is replicated. However, there is
discrepancy in the order of variation of the ampli-
tude. The similarities and differences are shown in
greater detail in Fig. 6(c) and (d). From the third sec-
ond to the fourth second, two maxima are shown, be-
fore plunging to a local minimum value, which in-
creases to achieve two successive maxima, before de-
creasing again. In Fig. 6(d), these fluctuations have
been predicted. However, the first two local maxima
are sharper than observed in practice, and the next suc-
cessive maxima are different in amplitude when com-
pared to each other. The minimum value is accurate,
although predicted to occur before it actually happens.
The numerical computation in Fig. 6(d) also shows an

additional lag in time at 3.6 s, which does not exist in
the laboratory.

The main shortcoming of the current model is that
it is not yet able to accurately predict the amplitudes of
the system response at frequencies higher than the op-
timum value. Figure 7(a) displays the relative motion
of the bar when the function generator is set at 9 Hz.
A waveform which is quite regular is depicted, which
is punctuated by short intervals of small displacement
amplitudes. On closer inspection of this waveform in
1 second in Fig. 7(c), the larger amplitudes are similar
in magnitude. The numerical integration of Fig. 7(b)
yields a smaller amplitude of approximately 0.005 m,
as compared to 0.03 m seen in experiment. This dif-
ference is seen more clearly in Fig. 7(c) and (d).
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Fig. 6 Relative displacement-time history of the metal bar for a frequency of the control signal of 2.5 Hz obtained from (a) experiment,
(b) numerical integration, (c) 1 second of the experiment and (d) 1 second of the numerical integration

Phase planes of the steady-state motion were con-
structed alongside Poincaré maps to confirm the nature
of the orbit. The irregular motion detected at lower fre-
quencies has been found to exist within an attractor of
chaotic motion. From the time history of Fig. 6, the
chaos is shown again in Fig. 8(a) where there is no
clear indication of any periodic orbit. The first 12 cy-
cles of motion were taken to be transient and not in-
cluded so as to plot the steady state. By sampling data
points at the same frequency, a closed form of the at-
tractor is seen in Fig. 8(b). Computation of a maximum
Lyapunov exponent via LyapOde (a “C” routine [39]
written based on QR decomposition method [40]) for
this frequency has yielded a value of 6.67, which pro-
vided further evidence of a chaotic trajectory. Another

piece of evidence of a transition from chaotic motion
to periodic motion is the construction of a bifurcation
diagram, which was analyzed experimentally in [25]
and numerically in [41].

However, chaotic motion predicted at a higher fre-
quency may also be more simply found to linger
within a definite range of displacement and velocity
as shown in Fig. 9.

Previous work had identified periodic motion to be
most beneficial to the soil penetration progress. The
mathematical model is capable of locating such attrac-
tors [41]. Both period-1 and period-2 orbits have been
computed.

To further confirm the qualitative nature of the dy-
namics responses, a basin of attraction was plotted for
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Fig. 7 Relative displacement-time history of the metal bar for a frequency of the control signal of 9 Hz obtained from (a) experiment,
(b) numerical integration, (c) 1 second of the experiment and (d) 1 second of the numerical integration

Fig. 8 (a) Phase plane and (b) Poincaré map of motion of bar relative to the base plate at a control frequency of 2.5 Hz
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Fig. 9 (a) Phase plane and (b) Poincaré map of motion of bar relative to the base plate at a control frequency of 13 Hz. The first 65
cycles of motion were taken to be transient

Fig. 10 Basin of attraction numerically constructed for the
same system parameters as in [25]. The set of initial conditions
ranges from −0.05 m to 0.005 m for relative displacement and

−2 m/s to 2 m/s for the relative velocity. The control frequency
ranges from (a) 29.5 rad/s (4.695 Hz); (b) 31 rad/s (4.93 Hz);
(c) 32.8 rad/s (5.22 Hz) and (d) 47 rad/s (7.48 Hz)
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Fig. 11 Phase planes and Poincaré maps of motion of bar rela-
tive to the base plate at a control frequency of 47 rad/s (7.48 Hz)
based on two sets of initial conditions: (a) phase plane and
(b) Poincaré map of initial relative displacement of −0.022 m

and relative velocity of 0 m/s (corresponding to the cyan basin
in Fig. 10(d)); (c) phase plane and (d) Poincaré map of ini-
tial relative displacement of −0.045 m and relative velocity of
−1 m/s (corresponding to the magenta basin in Fig. 10(d))

the same set of parameter values. A set of initial condi-
tions of −0.05 m to 0.005 m for the relative displace-
ment and −2 m/s to 2 m/s for the relative velocity
was selected to mimic experimental conditions. There
is only one attractor shown in the basin of attraction
for the control frequency of 29.5 rad/s (4.695 Hz),
31 rad/s (4.93 Hz) and 32.8 rad/s (5.22 Hz). The
attractor appears to be chaotic when the control fre-
quency is 29.5 rad/s (4.695 Hz). As the control fre-
quency increases to 31 rad/s (4.93 Hz), the attractor
is period-2 in nature, represented by the 2 green dots
in Fig. 10(b). When the control frequency changes to
32.8 rad/s (5.22 Hz), the attractor becomes a small
circle as shown in Fig. 10(c), settling to a period-1
attractor. The attractor is a circle instead of a point

due to the fact that the phase portrait actually fluc-
tuates within a small area. On increasing the control
frequency to 47 rad/s (7.48 Hz), two attractors ap-
pear in the basin of attraction. These two attractors,
one in green circle while the other one in a thin red
loop, are period-1. This is double confirmed by draw-
ing the phase diagram using two sets of initial con-
ditions, one for each basin. The phase plane diagram
is shown in Fig. 11. It shows that both attractors have
a single period. The Poincaré maps further confirmed
the shape of the two attractors shown in Fig. 10(d). The
first 37 cycles of motion (for approximately 5 seconds)
were taken to be transient and not included in the dia-
gram.
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4 Conclusions

By scrutinising the system responses of the new
electro-vibro-impact system, it has been found that
both periodic and chaotic trajectories exist. Mathemat-
ical modeling has established a correlation with exper-
imental data, and hence can be used as a numerical
tool to optimize the mechanism when it is deployed in
actual soil conditions. Of the important parameters to
which the machine performance is sensitive, attention
has been paid to the variation in the control frequency.
The progression rate and impact force of the machine
have been found to be largest when periodic trajec-
tories of the metal bar exist. Time histories demon-
strate a wide variety of responses, from period one,
period two to chaotic. Poincaré maps have also been
constructed to identify the attractors. The qualitative
response has been verified with basins of attraction.

On gaining more confidence in this mathematical
model, future endeavors to optimize and control the
system would be able to start with a set of equations.
In this way, either approximate or exact analytical so-
lutions may be sought for future experimental verifi-
cation.
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