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Abstract
In this paper, we introduce a new implicit iteration method for
finding a solution for a variational inequality involving Lipschitz con-
tinuous and strongly monotone mapping over the set of common fixed
points for a finite family of nonexpansive mappings on Hilbert spaces.

12
1. INTRODUCTION
Let C' be a nonempty closed and convex subset of a real Hilbert space H
with inner product (-,-) and norm || - || and let F' : H — H be a nonlinear
mapping. The variational inequality problem is formulated as finding a point
p* € C such that
(F(p*),p—p") 20, vpeC. (1.1)

'Key words: Contraction, common fixed points, and nonexpansive mappings.
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Variational inequalities were initially studied by Stampacchia in [1] and ever
since have been widely investigated, since they cover as diverse disciplines
as partial differential equations, optimal control, optimization, mathematical
programming, mechanics, and finance (see, [1]-[3]).

It is well known that, if F' is a L-Lipschitz continuous and n-strongly
monotone, i.e., F' satisfies the following conditions:

|F(x) = F(y)| < Lz —yll;
(F(z) = F(y),z —y) > nllz —y|*,

where L and 7 are fixed positive numbers, then (1.1) has a unique solution.
It is also known that (1.1) is equivalent to the fixed-point equation

p = Po(p — nF(p)), (1.2)

where Po denotes the metric projection from = € H onto C' and p is an
arbitrarily fixed positive constant.

Let {T;}Y, be a finite family of nonexpansive self-mappings of C. For
finding an element p € NY, Fiz(T;), Xu and Ori introduced in [4] the follow-
ing implicit iteration process. For oy € C' and {8k }32; C (0,1), the sequence
{zx} is generated as follows:

x1 = Prxg + (1 — Br)Thay,
Ty = Pax1 + (1 — [a)Thxs,
zn = Byan-—1+ (1 — Bn)TNan,

ry+1 = Byvaen + (1 = Bys1)The Ny,

The compact expression of the method is the form
vy = Brrp—1 + (1 = Bp)Ter, k> 1, (1.3)

where Tj,) = T}, modan, for integer n > 1, with the mod function taking values
in the set {1,2,---, N.} They proved the following result.

Theorem 1.1. Let H be a real Hilbert space and C' be a nonempty closed
conver subset of H. Let {T;}Y, be N nonexpansive self-maps of C such that
NN Fix(T;) # 0, where Fiz(T;) = {x € C : Tjx = z}. Let 9 € C and
{Be 32, be a sequence in (0,1) such that limyg_, B = 0. Then, the sequence
{z1} defined implicitly by (1.3) converges weakly to a common fized point of
the mappings {T; }I¥,.



Further, Zeng and Yao introduced in [5] the following implicit method.
For an arbitrary initial point zy € H, the sequence {xy}72, is generated as
follows:

ry = Sixo + (1 — B)[Thar — MpF (Tho)],
Ty = Por1 + (1 — Bo)[Towy — NopF (Toxs)],
zn = Pnen—1+ (1 = By)[Tnaeny — AnpF (Tyzn)],

vy = Bvprny + (1= Bys)[Tiensr — AvppF (Tizn )],

The scheme is written in a compact form as
rp = Brr—1 + (1 = Bi) [Timze — MepnF (Tigew)], k> 1 (1.4)

They proved the following result.

Theorem 1.2. Let H be a real Hilbert space and F : H — H be a mapping
such that for some constants L,n > 0, F' is L-Lipschitz continuous and n-
strongly monotone. Let {T;}Y., be N nonexpansive self-maps of H such that
C =N Fiz(T;) # 0. Let p € (0,2n/L?), let zg € H,{\.}32, C [0,1)
and {Br}32, C (0,1) satisfying the conditions: Y o M < 00 and o <
Br < B,k > 1, for some o, 8 € (0,1). Then, the sequence {xy} defined by
(1.4) converges weakly to a common fized point of the mappings {T;}Y.,. The
convergence is strong if and only if liminfy_, . d(zg, C) = 0.

Clearly, from Y~ Ay < oo we have that A\, — 0 as k — oco. To obtain
strong convergence without the condition Y >~ Ay < oo, in this paper we
propose the following implicit algorithm:

xy =Tz, T':=TTy.. T, te(0,1), (1.5)
where T} are defined by

I denotes the identity mapping of H, and the parameters {\;}, {8} C (0,1)
for all t € (0,1) satisfy the following conditions: A; — 0 as t — 0 and
0 < liminf; ,o 8 < limsup, o0 < 1,i=1,---, N.

2. MAIN RESULT

We formulate the following facts for the proof of our results.



Lemma 2.1 [6]. (i) ||z +y||* < ||z]]*+ 2(y,z+y) and for any fizedt € [0,1]

(i) 11 =)z + tyll* = (L = )]l + tlyl* = (L =)tz —ylI*, Va,y € H.
With T' = I, from [7], we have the following fact.

Lemma 2.2. ||Tjz — Tiy|| < (1 — N7)||lz —yll, Ve,y € H and for a fized

number p € (0,2n/L?), where 7 =1 — /1 — pu(2n — pL?) € (0,1).

Lemma 2.3(Demiclosedness Principle [8]). Assume that T is a nonexpansive
self-mapping of a closed conver subset K of a Hibert space H. If T has a
fized point, then I —T is demiclosed; that is, whenever {xy} is a sequence in
K weakly converging to some x € K and the sequence {(I — T)xy} strongly
converges to some y, it follows that (I —T)x =y.

Now, we are in a position to prove the following result.

Theorem 2.4. Let H be a real Hilbert space and F': H — H be a mapping
such that for some constants L,n > 0, F' is L-Lipschitz continuous and n-
strongly monotone. Let {T;}Y., be N nonexpansive self-maps of H such that
C =N, Fix(T;) # 0. Let u € (0,2n/L*) and let t € (0,1),{\}, {8} C
(0,1), such that
A —0,as t—0 and 0<liminf 3 <limsupfi <1, i=1,--- N.
t=0 t—0
Then, the net {x:} defined by (1.5)-(1.6) converges strongly to the unique
element p* in (1.1).
Proof. By Lemma 2.2, we have that
T~ T'y| < (1 = Am) T4 iz — T Ty

< (1=Mn)| Tz = Tyl < (1= A7)z =yl Va,y € H.

So, T is a contraction in H. By Banach’s Contraction Principle, there exists
a unique element z; € H such that z; = T"x, for all t € (0,1).

Next, we show that {x,} is bounded. Indeed, for a fixed point p € C, we
have that T/p =p for i =1, - -, N, and hence

lwe = pll = | T"xe = pl| = | T"2 — Tyy.. Tip||

NI — NpF)T sy Ty — (I — MpuF)Txe Tip — MepnF (p) ||
< (1= AT Tha, — Tl Tip + A F)]
< (L= M) Ty Tiwe — Ty il + Al F ()|

< (L= AT} Tz, — T Tipll + At F (p) |
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(1 = M) Tiae — Tipll + Aepl F(p)|
(1 = Aer)llee = pll + Al F ()]
Therefore,

o —pll < ZI1F Q)]

that implies the boundedness of {z;}. So, are the nets {F(y")},{vi},i =

1,--+ N.
Put . . .
Yy = (1 - 5t)55t + B, Ty,
vi = (1= 8y + B Toyy
R o
Yy = (1 - Bt)yt T+ BTy, 1a
yl = (1= BN )y + BN Ty
Then,
zy = (I — MpF)yY. (2.2)
Moreover,
2, = pl|* = [|(I = ApF)y,” = pl)?
= ly = pII> = 2]l F (), w — p) + AP F ()17
<yt = pll* = 22ep(F(y), v — p) + NP | F ()P
<y — plI* = 2Mp(F (y,7), 2 — p) + NP || F (g2
< lze = plI* = 20 E (W), ut — p) + MNP F(y)|)?
Thus,
At
nllyt —pl* + (F(p),yy —p) < %HF(yiV)HZ- (2.3)

Further, for the sake of simplicity, we put 3? = z; and prove that
ly: — Tyl = 0,

ast—0fore=1,--- N.

Let {tx} C (0,1) be an arbitrary sequence converging to zero as k — 0o
and z, := x,,. We have to prove that |lyi — Ty '|| — 0, where y} are defined
by (2.1) with ¢ = ¢, and yj, = y; . Let {z;} be a subsequence of {z;} such
that

lim sup [lye — Ty || = lim [|y; — Ty ™.

k—o0



Let {xy,} be a subsequence of {x;} such that

lim sup [lzx — pl| = lim [lzx, —p|.
k—o0 J—00

From (2.2) and Lemma 2.1, it implies that

g, = pl* = (T = A, oF ) = plf?
<l = plI* = 20, m{F(yp)), i, — p)
= (1= By, = p) + B (Twy, " — Twp) |
— 2\ 1 (F (YY), oy — )
< (1 =B)llyr = oll® + B 1 Ty, * = Tl
— 2\, 1 (F (YY), oy — )
<lye " = plI” = 22, u(F (i), — p)
<< ly, = plP = 20, 1(F (42)), 25, — )
< lzg; = plI* = 2\, 1 (F (Y1), i, — )
Hence,
tim s, —pll = i i, —pll, i=1 N (2.4)
By Lemma 2.1,
lyi, = plI* = (L= Bi)llyi, ' — ol + 85, | Ty " = pll?
= B, (1= BiMyi, — Ty, PP
< (1= Bi)lve, " = pl* + B, vt =l
= B, (1= BiMyi, — Ty, 1P
= |lyi, " = plI” = 81, (1 = Bi,)lwi,, — T, 11
<=l = ol = 8, (1= B lvk, — Ty 12
= |lzw, = pl* = 85, (1 = Bi)llve, — Tigy, "I i=1,--+ N.

Without loss of generality, we can assume that o < 3¢ < 8 for some «, 8 €
(0,1). Then, we have

a1 = Dk, — Twi, 17 < llww, — 2l = i, —plI*
This together with (2.4) implies that

. i i—1)2 _ 1
lim i, — Ty "F =0, @=1,---N.
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It means that |jyi — Tyy; '|| = 0 ast — 0 for ¢ = 1, - -, N. On the other
hand, from ‘ . o .
ly; = Tyl = (L= BD Ny~ = Ty,
which is followed from (2.1), and 0 < a < ff < 8 < 1, it follows that
lyi " = Tiy, ' = 0 ast —0.
Next, we show that ||z, — T;x,|| — 0 as ¢t — 0. In fact, in the case that
i =1 we have y? = z;. So, ||z; — Tyz¢| — 0 as t — 0. Further, since

ly; = Tiell = (1= Bp) |2 — Thae|
and ||z, — Thx¢|| — 0, we have that ||y} — Tyz¢|| — 0. Therefore, from
lve = i Il < llwe = Taae]l + [ Trwe — |
it follows that ||z; — y}|| — 0 as ¢ — 0. On the other hand, since

ly7 = Toye I = (1 = By — Ty || = 0

and 2 231 1 2 1
ly; — 2|l < (1= BP)lyy — 2el| + By | Ty, — 24|

< (U= BNy — well + BN Ty — v | + g — ]

we obtain that ||y? — z;]| — 0 as t — 0. Now, from

e = Towel| < llwe = will + ly = Towe || + [ Toyy — Toe|
< llwe = w1l + 1y — Toy |+ [lyy — 2]

and ||z — y2 ||, lly? — Ty |, lvi — ]| — 0, it follows that ||z, — Toxy|] — 0.
Similarly, we obtain that ||x; — Tjx:|| — 0, fori = 1,--+-, N and ||y — ;|| — 0
as t — 0.

Let {xx} be any sequence of {z;} converging weakly to p as k — oo.
Then, ||z — Tizg|| — 0, for i = 1,-- -, N and {y.'} also converges weakly to
p. By Lemma 2.3, we have p € C = NY, Fiz(T;) and from (2.3), it follows
that

(F(p),p—p) >0 VpeC.

Since p, p € C, by replacing p by tp+ (1 —t)p in the last inequality, dividing
by ¢t and taking ¢ — 0 in the just obtained inequality, we obtain
(F(p),p—p) >0 VpeC.

The uniqueness of p* in (1.1) guarantees that p = p*. Again, replacing p in
(2.3) by p*, we obtain the strong convergence for {x;}. This completes the
proof.



3. APPLICATION

Recall that a mapping S : H — H is called a y-strictly pseudocontractive,
if there exists a constant v € [0, 1) such that

1Sz = SylI* < [lo = ylI* + 711 = )z — (I = S)yll*, Va,y € H.

It is well-known [9] that a mapping T': H — H by Tz = ax + (1 — a)Sz
with a fixed & € [y,1) for all x € H is a nonexpansive mapping and
Fix(T) = Fixz(S). Using this fact, we can extend our result to the case
C =N Fiz(S;), where S; is y;-strictly pseudocontractive as follows.

Let a; € [y:,1) be fixed numbers. Then, ¢ = NN, Fiz(T}) with Tjy =
ay + (1 — «;)S;y, a nonexpansive mapping, for ¢ = 1---, N, and hence

Tly = (1- By + BiTy

So, we have the following result.

(3.1)

Theorem 3.1. Let H be a real Hilbert space and F': H — H be a mapping
such that for some constants L,n > 0, F' is L-Lipschitz continuous and n-
strongly monotone. Let {S;}, be N ~;-strictly pseudocontractive self-maps
of H such that C = MY, Fiz(S;) # 0. Let o; € [vi, 1), € (0,2n/L?) and let
t€(0,1),{\}, {8} € (0,1), such that

A —+0,as t—=0 and O<limtin%ﬁ,f§limsupﬁf<1, 1=1,--- N.
_)

t—0

Y

Then, the net {x;} defined by
x =Tz, T =TT T, te(0,1),

where T, fori = 1,--- N, are defined by (3.1) and Tix = (I — \uF)z,
converges strongly to the unique element p* in (1.1).

It is known in [10] that Fiz(S) = C where S = 3.V, &5S; with & > 0
and YN & = 1 for N vsstrictly pseudocontractions {S;}¥,. Moreover, S
is y-strictly pseudocontractive with v = max{vy; : 1 <1i < N}. So, we also
have the following result.

Theorem 3.2. Let H be a real Hilbert space and F': H — H be a mapping
such that for some constants L,n > 0, F' s L-Lipschitz continuous and n-
strongly monotone. Let {S;}X, be N ~;-strictly pseudocontractive self-maps
of H such that C = MY, Fix(S;) # 0. Let a € [y,1), where v = max{~; :
1<i< N} pe(0,2n/L?) and let t € (0,1),{\}, {8} C (0,1), such that

A —0,as t—0 and 0<liminf 8, <limsupf; < 1.
t—=0 t—0
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Then, the net {x;}, defined by

N
z =Tz, T:= To((1 = B(1 —a)I + Bi(1 — ) Z&Si), te(0,1),

=1

where Tt = (I — \uF), & > 0 and Zf\il & = 1, converges strongly to the
unique element p* in (1.1).

This work was supported by the Vietnamese National Foundation of Sci-
ence and Technology Development.
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