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Abstract

In this paper, we introduce a new implicit iteration method for
finding a solution for a variational inequality involving Lipschitz con-
tinuous and strongly monotone mapping over the set of common fixed
points for a finite family of nonexpansive mappings on Hilbert spaces.

1 2

1. INTRODUCTION

Let C be a nonempty closed and convex subset of a real Hilbert space H
with inner product 〈·, ·〉 and norm ‖ · ‖ and let F : H → H be a nonlinear
mapping. The variational inequality problem is formulated as finding a point
p∗ ∈ C such that

〈F (p∗), p− p∗〉 ≥ 0, ∀p ∈ C. (1.1)

1Key words: Contraction, common fixed points, and nonexpansive mappings.
2AMS 2000 Mathematics Subject Classification (MSC): 41A65, 47H17, 47H20.
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Variational inequalities were initially studied by Stampacchia in [1] and ever
since have been widely investigated, since they cover as diverse disciplines
as partial differential equations, optimal control, optimization, mathematical
programming, mechanics, and finance (see, [1]-[3]).

It is well known that, if F is a L-Lipschitz continuous and η-strongly
monotone, i.e., F satisfies the following conditions:

‖F (x)− F (y)‖ ≤ L‖x− y‖;
〈F (x)− F (y), x− y〉 ≥ η‖x− y‖2,

where L and η are fixed positive numbers, then (1.1) has a unique solution.
It is also known that (1.1) is equivalent to the fixed-point equation

p = PC(p− µF (p)), (1.2)

where PC denotes the metric projection from x ∈ H onto C and µ is an
arbitrarily fixed positive constant.

Let {Ti}Ni=1 be a finite family of nonexpansive self-mappings of C. For
finding an element p ∈ ∩Ni=1Fix(Ti), Xu and Ori introduced in [4] the follow-
ing implicit iteration process. For x0 ∈ C and {βk}∞k=1 ⊂ (0, 1), the sequence
{xk} is generated as follows:

x1 = β1x0 + (1− β1)T1x1,
x2 = β2x1 + (1− β2)T2x2,
· · · · · · · · · · · · · · · · · · · · · · · ·
xN = βNxN−1 + (1− βN)TNxN ,

xN+1 = βN+1xN + (1− βN+1)T1xN+1,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

The compact expression of the method is the form

xk = βkxk−1 + (1− βk)T[k]xk, k ≥ 1, (1.3)

where T[n] = Tn modN , for integer n ≥ 1, with the mod function taking values
in the set {1, 2, · · ·, N.} They proved the following result.

Theorem 1.1. Let H be a real Hilbert space and C be a nonempty closed
convex subset of H. Let {Ti}Ni=1 be N nonexpansive self-maps of C such that
∩Ni=1Fix(Ti) 6= ∅, where Fix(Ti) = {x ∈ C : Tix = x}. Let x0 ∈ C and
{βk}∞k=1 be a sequence in (0, 1) such that limk→∞ βk = 0. Then, the sequence
{xk} defined implicitly by (1.3) converges weakly to a common fixed point of
the mappings {Ti}Ni=1.
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Further, Zeng and Yao introduced in [5] the following implicit method.
For an arbitrary initial point x0 ∈ H, the sequence {xk}∞k=1 is generated as
follows:

x1 = β1x0 + (1− β1)[T1x1 − λ1µF (T1x1)],

x2 = β2x1 + (1− β2)[T2x2 − λ2µF (T2x2)],

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
xN = βNxN−1 + (1− βN)[TNxN − λNµF (TNxN)],

xN+1 = βN+1xN + (1− βN+1)[T1xN+1 − λN+1µF (T1xN+1)],

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

The scheme is written in a compact form as

xk = βkxk−1 + (1− βk)[T[k]xk − λkµF (T[k]xk)], k ≥ 1. (1.4)

They proved the following result.

Theorem 1.2. Let H be a real Hilbert space and F : H → H be a mapping
such that for some constants L, η > 0, F is L-Lipschitz continuous and η-
strongly monotone. Let {Ti}Ni=1 be N nonexpansive self-maps of H such that
C = ∩Ni=1Fix(Ti) 6= ∅. Let µ ∈ (0, 2η/L2), let x0 ∈ H, {λk}∞k=1 ⊂ [0, 1)
and {βk}∞k=1 ⊂ (0, 1) satisfying the conditions:

∑∞
k=1 λk < ∞ and α ≤

βk ≤ β, k ≥ 1, for some α, β ∈ (0, 1). Then, the sequence {xk} defined by
(1.4) converges weakly to a common fixed point of the mappings {Ti}Ni=1. The
convergence is strong if and only if lim infk→∞ d(xk, C) = 0.

Clearly, from
∑∞

k=1 λk < ∞ we have that λk → 0 as k → ∞. To obtain
strong convergence without the condition

∑∞
k=1 λk < ∞, in this paper we

propose the following implicit algorithm:

xt = T txt, T t := T t
0T

t
N ...T

t
1, t ∈ (0, 1), (1.5)

where T t
i are defined by

T t
i x = (1−βi

t)x+βi
tTix, i = 1, ···, N, T t

0y = (I−λtµF )y, x, y ∈ H, (1.6)

I denotes the identity mapping of H, and the parameters {λt}, {βi
t} ⊂ (0, 1)

for all t ∈ (0, 1) satisfy the following conditions: λt → 0 as t → 0 and
0 < lim inft→0 β

i
t ≤ lim supt→0 β

i
t < 1, i = 1, · · ·, N.

2. MAIN RESULT

We formulate the following facts for the proof of our results.
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Lemma 2.1 [6]. (i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 and for any fixed t ∈ [0, 1]
(ii) ‖(1− t)x+ ty‖2 = (1− t)‖x‖2 + t‖y‖2 − (1− t)t‖x− y‖2, ∀x, y ∈ H.

With T = I, from [7], we have the following fact.

Lemma 2.2. ‖T t
0x − T t

0y‖ ≤ (1 − λtτ)‖x − y‖, ∀x, y ∈ H and for a fixed
number µ ∈ (0, 2η/L2), where τ = 1−

√
1− µ(2η − µL2) ∈ (0, 1).

Lemma 2.3(Demiclosedness Principle [8]). Assume that T is a nonexpansive
self-mapping of a closed convex subset K of a Hibert space H. If T has a
fixed point, then I −T is demiclosed; that is, whenever {xk} is a sequence in
K weakly converging to some x ∈ K and the sequence {(I − T )xk} strongly
converges to some y, it follows that (I − T )x = y.

Now, we are in a position to prove the following result.

Theorem 2.4. Let H be a real Hilbert space and F : H → H be a mapping
such that for some constants L, η > 0, F is L-Lipschitz continuous and η-
strongly monotone. Let {Ti}Ni=1 be N nonexpansive self-maps of H such that
C = ∩Ni=1Fix(Ti) 6= ∅. Let µ ∈ (0, 2η/L2) and let t ∈ (0, 1), {λt}, {βi

t} ⊂
(0, 1), such that

λt → 0, as t→ 0 and 0 < lim inf
t→0

βi
t ≤ lim sup

t→0
βi
t < 1, i = 1, · · ·, N.

Then, the net {xt} defined by (1.5)-(1.6) converges strongly to the unique
element p∗ in (1.1).

Proof. By Lemma 2.2, we have that

‖T tx− T ty‖ ≤ (1− λtτ)‖T t
N ...T

t
1x− T t

N ...T
t
1y‖

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ (1− λtτ)‖T t

i ...T
t
1x− T t

i ...T
t
1y‖

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ (1− λtτ)‖T t

1x− T t
1y‖ ≤ (1− λtτ)‖x− y‖ ∀x, y ∈ H.

So, T t is a contraction in H. By Banach’s Contraction Principle, there exists
a unique element xt ∈ H such that xt = T txt for all t ∈ (0, 1).

Next, we show that {xt} is bounded. Indeed, for a fixed point p ∈ C, we
have that T t

i p = p for i = 1, · · ·, N , and hence

‖xt − p‖ = ‖T txt − p‖ = ‖T txt − T t
N ...T

t
1p‖

= ‖(I − λtµF )T t
N ...T

t
1xt − (I − λtµF )T t

N ...T
t
1p− λtµF (p)‖

≤ (1− λtτ)‖T t
N ...T

t
1xt − T t

N ...T
t
1p‖+ λtµ‖F (p)‖

≤ (1− λtτ)‖T t
N−1...T

t
1xt − T t

N−1...T
t
1p‖+ λtµ‖F (p)‖

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ (1− λtτ)‖T t

i ...T
t
1xt − T t

i ...T
t
1p‖+ λtµ‖F (p)‖
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ (1− λtτ)‖T t

1xt − T t
1p‖+ λtµ‖F (p)‖

≤ (1− λtτ)‖xt − p‖+ λtµ‖F (p)‖.
Therefore,

‖xt − p‖ ≤
µ

τ
‖F (p)‖

that implies the boundedness of {xt}. So, are the nets {F (yNt )}, {yit}, i =
1, · · ·, N .

Put
y1t = (1− β1

t )xt + β1
t T1xt,

y2t = (1− β2
t )y1t + β2

t T2y
1
t ,

· · · · · · · · · · · · · · · · · · · · · ·
yit = (1− βi

t)y
i−1
t + βi

tTiy
i−1
t ,

· · · · · · · · · · · · · · · · · · · · · ·
yNt = (1− βN

t )yN−1t + βN
t TNy

N−1
t .

(2.1)

Then,
xt = (I − λtµF )yNt . (2.2)

Moreover,

‖xt − p‖2 = ‖(I − λtµF )yNt − p‖2

= ‖yNt − p‖2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2tµ
2‖F (yNt )‖2

≤ ‖yN−1t − p‖2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2tµ
2‖F (yNt )‖2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
≤ ‖y1t − p‖2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2tµ

2‖F (yNt )‖2

≤ ‖xt − p‖2 − 2λtµ〈F (yNt ), yNt − p〉+ λ2tµ
2‖F (yNt )‖2

Thus,

η‖yNt − p‖2 + 〈F (p), yNt − p〉 ≤
λtµ

2
‖F (yNt )‖2. (2.3)

Further, for the sake of simplicity, we put y0t = xt and prove that

‖yit − Tiyi−1t ‖ → 0,

as t→ 0 for i = 1, · · ·, N.
Let {tk} ⊂ (0, 1) be an arbitrary sequence converging to zero as k → ∞

and xk := xtk . We have to prove that ‖yik−Tiyi−1k ‖ → 0, where yik are defined
by (2.1) with t = tk and yik = yitk . Let {xl} be a subsequence of {xk} such
that

lim sup
k→∞
‖yk − Tiyi−1k ‖ = lim

l→∞
‖yil − Tiyi−1l ‖.
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Let {xkj} be a subsequence of {xl} such that

lim sup
k→∞
‖xk − p‖ = lim

j→∞
‖xkj − p‖.

From (2.2) and Lemma 2.1, it implies that

‖xkj − p‖2 = ‖(I − λkjµF )yNkj − p‖
2

≤ ‖yNkj − p‖
2 − 2λkjµ〈F (yNkj), xkj − p〉

= ‖(1− βN
kj

)(yN−1kj
− p) + βN

kj
(TNy

N−1
kj
− TNp)‖2

− 2λkjµ〈F (yNkj), xkj − p〉
≤ (1− βN

kj
)‖yN−1kj

− p‖2 + βN
kj
‖TNyN−1kj

− TNp‖2

− 2λkjµ〈F (yNkj), xkj − p〉
≤ ‖yN−1kj

− p‖2 − 2λkjµ〈F (yNkj), xkj − p〉
≤ · · · ≤ ‖y1kj − p‖

2 − 2λkjµ〈F (yNkj), xkj − p〉
≤ ‖xkj − p‖2 − 2λkjµ〈F (yNkj), xkj − p〉.

Hence,
lim
j→∞
‖xkj − p‖ = lim

j→∞
‖yikj − p‖, i = 1, · · ·, N. (2.4)

By Lemma 2.1,

‖yikj − p‖
2 = (1− βi

kj
)‖yi−1kj

− p‖2 + βi
kj
‖Tiyi−1kj

− p‖2

− βi
kj

(1− βi
kj

)‖yikj − Tiy
i−1
kj
‖2

≤ (1− βi
kj

)‖yi−1kj
− p‖2 + βi

kj
‖yi−1kj

− p‖2

− βi
kj

(1− βi
kj

)‖yikj − Tiy
i−1
kj
‖2

= ‖yi−1kj
− p‖2 − βi

kj
(1− βi

kj
)‖yikj − Tiy

i−1
kj
‖2

≤ · · · = ‖y0kj − p‖
2 − βi

kj
(1− βi

kj
)‖yikj − Tiy

i−1
kj
‖2

= ‖xkj − p‖2 − βi
kj

(1− βi
kj

)‖yikj − Tiy
i−1
kj
‖2, i = 1, · · ·, N.

Without loss of generality, we can assume that α ≤ βi
t ≤ β for some α, β ∈

(0, 1). Then, we have

α(1− β)‖yikj − Tiy
i−1
kj
‖2 ≤ ‖xkj − p‖2 − ‖yikj − p‖

2.

This together with (2.4) implies that

lim
j→∞
‖yikj − Tiy

i−1
kj
‖2 = 0, i = 1, · · ·, N.
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It means that ‖yit − Tiy
i−1
t ‖ → 0 as t → 0 for i = 1, · · ·, N. On the other

hand, from
‖yit − Tiyi−1t ‖ = (1− βi

t)‖yi−1t − Tiyi−1t ‖,

which is followed from (2.1), and 0 < α ≤ βi
t ≤ β < 1, it follows that

‖yi−1t − Tiyi−1t ‖ → 0 as t→ 0.
Next, we show that ‖xt − Tixt‖ → 0 as t → 0. In fact, in the case that

i = 1 we have y0t = xt. So, ‖xt − T1xt‖ → 0 as t→ 0. Further, since

‖y1t − T1xt‖ = (1− β1
t )‖xt − T1xt‖

and ‖xt − T1xt‖ → 0, we have that ‖y1t − T1xt‖ → 0. Therefore, from

‖xt − y1t ‖ ≤ ‖xt − T1xt‖+ ‖T1xt − y1t ‖

it follows that ‖xt − y1t ‖ → 0 as t→ 0. On the other hand, since

‖y2t − T2y1t ‖ = (1− β2
t )‖y1t − T2y1t ‖ → 0

and
‖y2t − xt‖ ≤ (1− β2

t )‖y1t − xt‖+ β2
t ‖T2y1t − xt‖

≤ (1− β2
t )‖y1t − xt‖+ β2

t ‖T2y1t − y1t ‖+ ‖y1t − xt‖

we obtain that ‖y2t − xt‖ → 0 as t→ 0. Now, from

‖xt − T2xt‖ ≤ ‖xt − y2t ‖+ ‖y2t − T2y1t ‖+ ‖T2y1t − T2xt‖
≤ ‖xt − y2t ‖+ ‖y2t − T2y1t ‖+ ‖y1t − xt‖

and ‖xt − y2t ‖, ‖y2t − T2y1t ‖, ‖y1t − xt‖ → 0, it follows that ‖xt − T2xt‖ → 0.
Similarly, we obtain that ‖xt−Tixt‖ → 0, for i = 1, · · ·, N and ‖yNt −xt‖ → 0
as t→ 0.

Let {xk} be any sequence of {xt} converging weakly to p̃ as k → ∞.
Then, ‖xk − Tixk‖ → 0, for i = 1, · · ·, N and {yNk } also converges weakly to
p̃. By Lemma 2.3, we have p̃ ∈ C = ∩Ni=1Fix(Ti) and from (2.3), it follows
that

〈F (p), p− p̃〉 ≥ 0 ∀p ∈ C.

Since p, p̃ ∈ C, by replacing p by tp+ (1− t)p̃ in the last inequality, dividing
by t and taking t→ 0 in the just obtained inequality, we obtain

〈F (p̃), p− p̃〉 ≥ 0 ∀p ∈ C.

The uniqueness of p∗ in (1.1) guarantees that p̃ = p∗. Again, replacing p in
(2.3) by p∗, we obtain the strong convergence for {xt}. This completes the
proof.
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3. APPLICATION

Recall that a mapping S : H → H is called a γ-strictly pseudocontractive,
if there exists a constant γ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + γ‖(I − S)x− (I − S)y‖2, ∀x, y ∈ H.

It is well-known [9] that a mapping T : H → H by Tx = αx + (1 − α)Sx
with a fixed α ∈ [γ, 1) for all x ∈ H is a nonexpansive mapping and
Fix(T ) = Fix(S). Using this fact, we can extend our result to the case
C = ∩Ni=1Fix(Si), where Si is γi-strictly pseudocontractive as follows.

Let αi ∈ [γi, 1) be fixed numbers. Then, C = ∩Ni=1Fix(T̃i) with T̃iy =
αiy + (1− αi)Siy, a nonexpansive mapping, for i = 1 · ··, N , and hence

T̃ t
i y = (1− βi

t)y + βi
tT̃iy

= (1− βi
t(1− αi))y + βi

t(1− αi)Siy, i = 1 · ··, N.
(3.1)

So, we have the following result.

Theorem 3.1. Let H be a real Hilbert space and F : H → H be a mapping
such that for some constants L, η > 0, F is L-Lipschitz continuous and η-
strongly monotone. Let {Si}Ni=1 be N γi-strictly pseudocontractive self-maps
of H such that C = ∩N

i=1Fix(Si) 6= ∅. Let αi ∈ [γi, 1), µ ∈ (0, 2η/L2) and let
t ∈ (0, 1), {λt}, {βi

t} ⊂ (0, 1), such that

λt → 0, as t→ 0 and 0 < lim inf
t→0

βi
t ≤ lim sup

t→0
βi
t < 1, i = 1, · · ·, N.

Then, the net {xt} defined by

xt = T̃ txt, T̃ t := T t
0T̃

t
N ...T̃

t
1, t ∈ (0, 1),

where T̃ t
i , for i = 1, · · ·, N , are defined by (3.1) and T t

0x = (I − λtµF )x,
converges strongly to the unique element p∗ in (1.1).

It is known in [10] that Fix(S̃) = C where S̃ =
∑N

i=1 ξiSi with ξi > 0

and
∑N

i=1 ξi = 1 for N γi-strictly pseudocontractions {Si}Ni=1. Moreover, S̃
is γ-strictly pseudocontractive with γ = max{γi : 1 ≤ i ≤ N}. So, we also
have the following result.

Theorem 3.2. Let H be a real Hilbert space and F : H → H be a mapping
such that for some constants L, η > 0, F is L-Lipschitz continuous and η-
strongly monotone. Let {Si}Ni=1 be N γi-strictly pseudocontractive self-maps
of H such that C = ∩Ni=1Fix(Si) 6= ∅. Let α ∈ [γ, 1), where γ = max{γi :
1 ≤ i ≤ N}, µ ∈ (0, 2η/L2) and let t ∈ (0, 1), {λt}, {βt} ⊂ (0, 1), such that

λt → 0, as t→ 0 and 0 < lim inf
t→0

βt ≤ lim sup
t→0

βt < 1.
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Then, the net {xt}, defined by

xt = T̃ txt, T̃ t := T t
0((1− βt(1− α))I + βt(1− α)

N∑
i=1

ξiSi), t ∈ (0, 1),

where T t
0 = (I − λtµF ), ξi > 0 and

∑N
i=1 ξi = 1, converges strongly to the

unique element p∗ in (1.1).

This work was supported by the Vietnamese National Foundation of Sci-
ence and Technology Development.

References

[1] D. Kinderlehrer, and G. Stampacchia, An introduction to variational in-
equalities and their applications, Academic Press, New York, NY, 1980.

[2] R. Glowinski, Numerical methods for nonlinear variational problems,
Springer, New York, NY 1984.

[3] E. Zeidler, Nonlinear functional analysis and its applications, Springer,
New York, NY 1985.

[4] H.K. Xu and R.G. Ori, An implicit iteration process for nonexpansive
mappings, Numer. Func. Anal. Optim. 22 (2001)767-773.

[5] L.C. Zeng and J.Ch. Yao, Implicit iteration scheme with perturbed map-
ping for common fixed points of a finite family of nonexpansive map-
pings, Nonl. Anal. 64 (2006) 2507-2515.

[6] G. Marino and H.K. Xu, Weak and strong convergence theorems for
strict pseudo-contractions in Hibert spaces, J. Math. Anal. Appl. 329
(2007) 336-346.

[7] Y. Yamada, The hybrid steepest-descent method for variational inequali-
ties problems over the intesectionof the fixed point sets of nonexpansive
mappings, Inhently parallel algorithms in feasibility and optimization
and their applications, Edited by D. Butnariu, Y. Censor, and S. Reich,
North-Holland, Amsterdam, Holland, pp. 473-504, 2001.

[8] K. Goebel and W.A. Kirk, Topics in Metric Fixed Point Theory, Cam-
bridge Studies in Advanced Math., V. 28, Cambridge Univ. Press, Cam-
bridge 1990.

9



[9] H. Zhou, Convergence theorems of fixed points for k-strict pseudo-
contractions in Hibert spaces, Nonl. Anal. 69 (2008) 456-462.

[10] G.L. Aced and H.K Xu, Iterative method for strict pseudocontractions
in Hibert spaces, Nonlinear Anal. 67 (2007) 2258-2271.

10


