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Abstract. In this paper, we introduce mixed Pareto quasi-optimization problems and show
some sufficient conditions on the existence of their solutions. As special cases, we obtain several
results for the mixed Pareto quasi-equilibrium problem and also system of two Pareto quasi-

optimization problems.
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1 Introduction

Throughout this paper, unless otherwise spec-
ify, we denote by X, Y, Y7, Y, Z real locally con-
vex Hausdorff topological vector spaces. Assume
that D C X, K C Z are nonempty subsets. and
C; C Y, i = 1,2, are convex closed cones. 24
denotes the collection of all subsets in the set
A. Given multivalued mappings S : D x K —
2T . Dx K — 25:p . D — 2P Q
K x D — 2% and single-valued mappings F} :
KxKxD—=Y,Fh: KxDxD — Y, we
consider the following problem:

Mixed Pareto quasi-optimization prob-

lems
Find (z,
z € S(z,y);y € T(x,y)such that
there are nov € T'(z,y),v # y,t € P(Z),
y € Q(z,t),t # T with
F1(9,9, %) =¢c, F1(y, v, 2);
Fy(y,z,z) =, Fa(y, T, ).

y) € Dx K

Where a =¢ b means that a — b € C.

The multivalued mapping Q(z,.) : D — 2K,
GrQ(z,.) = {(t,y) € D x Ky € Q(z, 1)}
Setting (GrQ(z,.)) N (P(z) x K) = A x B, the
above problem becomes to find (z,y) € D x K
such that

zeSz,y);yeT(z,9);
Fi(y,9,%) € PMin(F1(y,T(z,9),7)|C1);
Fy(y,z,z) € PMin(Fy(A,z, B)|Ca),

with PMin(A|C) = {x € A|there arenoy €
A,y # x such that x =¢ y} is the set of Pareto
efficient points of A to C.

The purpose of this paper is to study the
existence for solutions of mixed Pareto quasi-
optimization problems and its applications to
different problems.

2 Preliminaries

Let Y be a Hausdorff locally convex topological
vector spaces and let C' C Y be a cone. We de-
note [(C) =CN(=C). If I(C) ={0},C is said
to be pointed. Let Y’ be the topological dual
space of Y. We denote by (£,y) the value of
£ eY at y € Y. The topological dual cone C’,
strict topological dual cone C'* of C' are defined
as

C'={¢€Y :(¢c) >0, forall ce C},
C't={¢ceY':(c) >0, forallce C\I(C)}.

In this paper, we allways assume that C' is
a pointed cone in Y and C'T # (.

The following concept (see in [1], [3], [5] and
[6]) is used in our studies.

Definition 2.1 A/

1) F : D — 2V is said to be upper (lower)
C—continuous in ¥ € dom F' if for any neigh-
borhood V of the origin in Y there is a neigh-
borhood U of Z such that F(z) C F(z)+V +C
(F(z) C F(x)+V — C, respectively)

holds for all x € U N domF.

2) F is upper (lower) C-convezr on D if for any



x1, x2 € D, o € [0,1], it holds aF(x1) + (1 —
a)F(x2) C F(az; + (1 — a)xz) + C
(respectively,

Flazi+(1—a)xe) C aF(z1)+ (1 —a)F(z2)—C)).
3) F is upper (lower) C-quasi-convez-like on
D if for any x1,z2 € D, a € [0,1], either
F(x1) C Flazy + (1 — a)xg) + C

or, F(z2) C Flaz:1 + (1 — a)xe) + C
(respectively, either

F(ary 4+ (1 —a)xe) C F(x1) = C

or, F(az; + (1 — a)za) C F(x2) — C), holds.

B/

(i) F : Dx D — 2V is called diagonally

upper (lower) C-convex in the second variable

if for any finite set {z1,...,2,} C D,z €
n n

CO{:El,...,IEn},fL' = Z AT, Ay 2 0’
j=1 J

J
itnholds
> a;jF(z,2;) C Fz,x)+ C
j=1

Qj = 1,
=1

( respectively, F(z,z) C Y a;F(z,z;) — C).
j=1

(i) F is called diagonally upper (lower) C-

quasi-convex-like in the second variable if

for any finite set {z1,...,z,} C D,z €
n n

co{zi,...,xn}t,x = > ajzj,05 >0, > o =1,

j_
there is an index j € {1,...,n} it hold

F(z,z;) C F(z,z)+ C,
( respectively, F(z,z) C F(z,z;) — C).

We need the following lemmas in the sequel.

Lemma 2.2 ([1]) Let X, D and Y be as in the
above lemma, C C'Y be a cone and £ € C',

F:D —Y be alower C -continuous mapping.
Then the function f : D — R defined by

f(x) = (¢, F(x)),
is a lower semicontinuous function.

Lemma 2.3 ([1]) Let X, D and Y be as in the
above lemma, C C Y be a cone and & € (',
F:D—Y beaC -convex mapping. Then the
function g : D — R defined by

g(x) = (& F(x)),

is a convex function.

The proofs are trivial.
In order to prove the main theorem, we use
the following lemma (see Lemma 4.2 in [7]).

Lemma 2.4 Let D,K be nonempty compact
convex subsets of locally convex Hausdorff topo-
logical vector spaces X,Y, respectively. Given
multivalued mappings S : D x K — 2P H :
D x K —25. M : D — 2P, We suppose that:

(i) S is a multivalued with nonempty convex
values and has open lower sections;

(ii)) H is wupper semi-continuous  with

nonempty closed convex values and the set

A={(z,y) |z € S(z,y),y € H(z,y)} is
closed;

(i1i) M has open lower sections and for all
x € D,x & coM(x).

Then there exists (T,y) € D x K with & €
S(z,9),y € H(z,y) and S(z,5) 0 M(z) = 0.

3 Existence of solutions

Given multivalued mappings S,T,P,Q and
F;,i = 1,2 with nonempty values as in Intro-
duction, we prove the following results:

Theorem 3.1 We assume that the following
conditions hold:

(i) D,K are nonempty conver compact sub-
sets;

(i1) S is a multivalued with nonempty convex
values and has open lower sections and
T is a continuous multivalued mapping
with nonempty closed convex values and
the subset A = {(z,y) € D x K|(z,y) €
S(z,y) x T(z,y)} is closed;

(1ii) P has open lower sections and P(z) C

S(z,y) for (x,y) € A. For any fized

t € D, the multivalued mapping Q(.,t) :

D — 2K s lower semi-continuous with

compact values;



(iv) The mapping F1 is a (—C1)— continu-
ous and Ci— continuous mapping. For
any fized t € D the mapping Fs(.,.,t) :
K x D — Yy is a (—C3)- continuous
mapping and for any fizred y € K, the
mapping No : K x D — Yoy defined by
Nao(y,x) = Fa(y, x, x) is Ca—continuous ;

(v) For any fized (z,y) € D x K, the mapping

Fi(y,.,x) : K — Y is C1— convex ( or,

C1—quasi-convex-like) and any y € K the

mapping Fa(y,.,.) : D x D — Yy is di-

agonally Co-convex in the second variable

(or, diagonally Ca-quasi-convez-like in the

second variable).

Then there exists (Z,y) € D x K such that

7€ S(z,9);y € T(z,y) such that

there are nov € T(Z,y),v # y,t € P(),
y € Q(z,t),t # T with

Fi(9,9,7) =c, F1(g,v,T);

Fy(y,z,7) =c, Fa(y,z,t).

Proof. Let & € Cf,i = 1,2 be fixed. Let
€ > 0 be arbitrary. Since & is continuous,
there exists a neighborhood V' of the origin in
Y such that (V) C (—5,5). We define the
multivalued mapping H : D x K — 2K by

H(SL‘,y) = {y/ € T(.T,y) : <§17F1(y,y’,:76)> <
<§17F1(ya ’U,$)>,V’U € T(xvy)}

For each (z,y) € D x K, we first show
that H(x,y) is a nonempty set. Indeed, for each
(r,y) € D x K,T(z,y) is a compact subset.
Therefore, we apply Lemma 2.2 in Section 2
with D = T'(x,y) and F = Fi(y,.,x) to con-
clude that the function f : T'(z,y) — R defined
by f(v) = (&1, Fi(y, v, x)), is a lower semicon-
tinuous function and hence there is ' € T'(z,y)

such that f(y) = I}l(ln )f(v). This shows
vel(xz,y

<£17 Fl(ya ylv 'I)> < <£1a Fl(ya U, SL')>,VU € T(Iﬁ, y)
and so y' € H(z,y).

Further, we show that H (z,y) is convex set,
for all (z,y) € D x K. Indeed, let y},y5 €
H(x,y) and X € [0,1]. The convexity of T'(z,y)

yields Ay} + (1 — \)yh € T(z,y) and

<€17F1(yayi7x)> < <51,F1(97Ua$)>7
€, Py ys.n)) < (&, Fily,v, ), Yo € T(z,y).

If Fi(y,.,z) is Cq-convex, we then have
Fi(y, vy + (1 = Nys, z) 2o, M (y,y1,0) + (1 —
M) F1(y, y5,z). This implies
(&1, Fay, Adyr + (1= Ny, ) < A&, Fi(y, vy, 2)) +
(1= X){&, Fi(y, 95, 2)), and then
<§17 Fl(y7 )‘yll + (1 - )‘)yé7 $)> < <€17 Fl(y7 v, $)>a
for allv € T(x,y). Thus, Ay} + (1 — Nyh €
H(z,y) and so H(x,y) is convex set.

If Fy(y, ., x) is Cy-quasi-convex-like, we have
Fy(y, Ay + (1= Ny, @) 2¢, Fily, v, 2),
or, F1(y, Ay; + (1 = Mya, @) Z¢, Fi(y, v5, @)

In both the cases, we get
(&1, Fuy, Ayi+(1=Nys, @) < (&, Fi(y, v, @)), Vv €
T(z,y). Thus, Ay} + (1 — N\)y,, € H(z,y) and so
H(z,y) is a convex set.

Next, we claim that H is a closed multi-
valued mapping. Let zo, — x,ya — y,y, €
H(za,Ya),yh, — Y. We have to show that
y' € H(z,y). Indeed, since y, € T(zq,yo) and
the upper semicontinuity and the closed val-
ues of T, we conclude that y' € T(z,y). For
yl, € H(Za,Ya), we have
(€15 F1 (Yo Yo Ta)) < (€15 F1(Yars v, 20)), for allv €
T(To, Ya)-

For each v € T'(z,y), by the lower semicon-
tinuity of 7', there exists vo € T(%q,Yo) such
that v, — v. We have
<§17 Fl(you y:)m .%'a)> < <§1a Fl(yom Va, .%'a)>,V Q.
Since F} is a (—C1)-continuous and C— contin-
uous multivalued mapping, there exists an index
ag such that, for all & > «g, we have

S F1<y,’l),$) +V_Cl;
S Fl(yozay/oga:pa) +V - Cl

Fl(you Vs .f[fa)
Fl (y7 y/a l‘)
and so,

<§17F1(yaova7-ra)> < <§1,F1(y7’(),1')>+
(517F1(y,y/,x)> < <§17F1(ya73/&7$a) +
Hence, (1, Fi(y, v, z)) < (&, Fi(y, v, 2)) +

Thusv <51,F1(y,y/,$)> < <£17F1(y,v,x)>,Vv €

T(z,y).
This implies ' € H(z,y) and H is a closed
multivalued mapping. Then, it follows from the

bl
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compactness of the subset K that Hp is up-
per semi-continuous with nonempty closed con-
vex values. The subset A = {(z,y) | = €
S(z,y),y € T(x,y)} is closed and so is the
subset {(z,y) | = € S(z,y),y € H(x,y)}.
Indeed, assume that zo — =,y0 — ¥,ZTa €
S(TayYa)s Yo € H(xa,yo). This implies that
To € S(Tay¥Ya),Ya € T(xa,Ya). Since A is
closed, we conclude that = € S(x,y)y €
T(x,y). Since H is a closed multivalued map-
ping and yo € H(ZasYa); (Ta,Ya) = (2,y), We
get y € H(x,y). Therefore, x € S(x,y),y €

H(z,y).

Lastly, we  define  the  multival-
ued mapping M D — 2P by
M@) = {t € P@)(& By,ra) >

(&2, Fo(y,x,t)), for some y € Q(z,t)}.

We verify that the multivalued mapping M
has open lower sections and for any z € D, x ¢
coM (x). Indeed, we can see that
M(z) = {t € D&, Fa(y,z2) >
(&2, Fa(y, x, 1)), for some y € Q(x,t)} N P(x).

For any t € D, deduce that
M=) = {z € Dl{& Ryr) >
(&9, Fy(y, x,t)), for some y € Q(z,t)} N P~L(¢).

Setting B(t) = {z € D|(&, Fy(y,z,x)) >
(&, Fo(y, x,t)), for some y € Q(z, 1)},
we first show that B(t) is open in D. One
can easily verify that D \ B(t) = {z €
Dlis, Foly,2,2)) < (2, Foly, 1)), for all y e
Q. 1)}.

Let zo € D\ B(t) and z, — . We have
to show that z € D \ B(t). Indeed, since x, €
D\ B(t) we conclude that (&2, F5(y, Ta, Ta)) <
(&2, Fa(y, xq,t)), for all y € Q(xq,t).

Take an arbitrary y € Q(z,t). Since Q(.,t) :
D — 2K is lower semicontinuous, there exists
Yo € Q(2q,t) with yo — y. The Co—continuity
of Ny and the (—Cy)—continuity of F5(., .,t) fol-
low that for any neighborhood V' of the origin
in Yo, there exists o such that, for all a > aj,

Fy(y,z,2) € Fa(Ya,Tasxa) +V — Ch,
F2(yomxavt) € Fz(y,x,t)+V—C’2.
This gives

<§2,F2(y,1:,:x)> < (52,F2(y,m,t)>,Vy € Q(‘T:at)7

and hence x € D\ B(t). Thus, D \ B(t) is a
closed subset in D and then B(t) is an open sub-
set in D. Therefore, M~1(t) = B(t) N P~1(t) is
open for any t € D. Consequently, M has open
lower sections.

Further, assume that there is * € D
such that = € coM(x).

n
t1,to, ...t € M(x) such that z = Z oty 0 >
=1

Then there exists

0,> a; = 1. This yields (&, Fa(yi, x,x)) >

=1
(€2, Fa(ys, x,1,)), for some y; € Q(a,t;).  (3.5)
On the other hand, if Fy(y,.,.) is diago-
nally Cs-convex in the second variable, we have
n
FQ(Z/,IE,-’E) € Z OéjFQ(y,l',tj) - 027 Vy € K.

Jj=1

This yields
<§2,F2(y,a:,:c)> S max

n
220, 2 aiFa(y,a.ty)
j=1

_1na. <£2,F2(y,l’,t]’)>, for all y € K.

7j=1,....mn
This contradicts (3.5).

If Fy(y,.,.) is diagonally Cs-quasi-convex-
like in the second variable, then there is an
index j € {1,..,n} it holds Far(y,z,z) =c,
Fy(y,z,t;), forall y € K. This implies
<£27 F2<y7 €, x)) < <§27 FQ(?J? T, tj))? Vy € K.
This also contradicts (3.5).

Therefore, for both the cases, we conclude that
x ¢ coM(x) for any x € D.

Thus, S,T,H and M satisfy all assump-
tions of Lemma 2.4 in Section 2. Applying
this theorem, we conclude that there exists
(z,5) € D x K such that z € S(z,9),y €
H(z,y) and S(z,y) N M(z) = 0. This implies
T € S(jjvg)vg € T(j,gj), <§17F1(g’g7j)> <
(&1, F1(g,v, 7)), for all v € T(Z, 7). (3.6)
And, for any ¢t € P(z) it shows ¢t € S(z,y) and
t ¢ M(Z). Therefore, we get (&2, Fo(y, T, T)) <
(&9, Fo(y, T, t)), for all y € Q(Z,t).

We now show that Fi(g,v,%)
Fi(y,9,%), for all v € T(%, 7).

Assume that there exists v* € T(Z,y) such
that Fi(y,v*,2) < Fi(y,y,z). This implies
(&, F1(y,v", 7)) < (&, F1(9, 9, 2))-

This contradicts (3. 6).

Thus, z € S(z,7), 5 € T(Z,7),

(€2,2) <

o



Fi(y,v,%) =¢, FA(Y,9,%), for all v € T(Z, 7).
Analogically, we obtain

F(y,Z,t) =c, Fa(y,z,7), forallt € P(z),y €
Q(z,1),

and the proof is completed. O

Remark 3.2 We assume that all the hypothe-
ses of Theorem 3.1 are satisfied except for (i)
and (iii) (respectively) replaced by

(i) S is a lower semi-continuous multivalued
mapping with nonempty conver values;

(i1i’) P is lower semi-continuous and P(x) C
S(z,y) forall z € S(z,y),y € T(x,y)
and the subset A = {(z,y) € D x
K|(z,y) € S(x,y) x T(x,y)} is closed.

Then the inequalities of that theorem 1is also
true.

Next, given multivalued mappings S, T with
nonempty values, Fi,F> as in Introduction,
we are interested in the system of quasi-

optimization problems of Types 1.

4 Applications

4.1 System of two Pareto quasi-
optimization problems of type 1.

Find (z,y) € D x K such that
T €5(7,9);9y € T(Z,9);
Fi(y,9,7) € PMin(F1(y,T(z,9),7)|C1);
F5(y,z,z) € PMin(Fs(y, z, S(x 7)|Ca).
We have the following results:

Theorem 4.1 Assume that the following con-
ditions hold:

(i) D,K are nonempty convex compact sub-
sets;

(i) S and T are continuous multivalued map-
pings with nonempty closed convex values;

(i1i) The mapping F; is a (—C;)— continuous
and C;— continuous mapping.

(iv) For any fized (x,y) € D x K, the map-
ping Fi(y,.,z) : K — 2" is C1— con-
vez ( or, C1—quasi-convez-like) and map-
ping Fy(y,.,.) : D x D — 2¥2 is lower
Cy-convex ( or, Ca-quasi-convez-like ).

Then there ezists (Z,y) € D x K such that & €
S(z,9);y € T(Z,y); such that there are no v €
T(z,y),v#y,t€S(T,y),t#T with

Fl(ya Y,z ) >_C' Fl(yvv I‘)

Fy(y,z,%) =, Fa(y, T, t).

Proof. Let & € C’{’L,i = 1,2 be fixed. Let € > 0
be arbitrary. Since &; is continuous, there ex-
ists a neighborhood V' of the origin in Y such
that & (V) C (=5, 5). We define the multival-
ued mapping H; : D x K — 2K i =1,2 by

Hy(z,y) = {y € T(z,y) : (&, Py, ¢, 2)) <
(&1, Fi(y,v,z)), for all v € T(x,y)}.
Hg(l',y) = {l'/ € S(I’,y) : <§27F2(y7$7x/)> <

(&2, F1(y,x,t)), for all t € S(z,y)}.

By the same arguments as in the proof of
Theorem 3.1, we conclude that H;,7 = 1,2 are
upper semi-continuous multivalued mappings
with nonempty convex and compact values.

Further, we define multivalued mapping G :
D x K — 2P*K by
G(z,y) = Hao(x,y) x Hi(z,y), (z,y) € D x K.
Then, G is also a upper semi-continuous mul-
tivalued mapping with nonempty convex and
compact values. According to Ky Fan fixed
point Theorem there exists (z,y) € D x K such
that (z,9) € G(z,y). This yields & € Ha(Z,7)
and y € Hy(Z,y) and then

z € S(z,9);y €T(z,79);

Fi(y,v,7) =c, F1(9,9,7), Vv € T(Z,7);
Fy(9,7,t) =c, Fa(5,2,7) — (C2\ {0});
for all ¢t € S(z,7).

\_//\/-\

Therefrom, the proof is completed. O

To conclude this paper, we assume that
Fi(y,y,x) =¢, 0 and Fy(y,x,z) =¢, 0 for any
(z,y) € D x K, then we obtain the above the-
orem for mixed Pareto quasi-equilibrium prob-
lems.



4.2

Mixed Pareto quasi-equilibrium
problems

Theorem 4.2 We assume that the following
conditions hold:

(1)

(i)

(iii)

(iv)

(v)

(vi)

D, K are nonempty convex compact sub-
sets;

S is a multivalued with nonempty convex
values and has open lower sections and
T is a continuous multivalued mapping
with nonempty closed convexr values and
the subset A = {(z,y) € D x K|(z,y) €
S(xz,y) x T'(x,y)} is closed;

P has open lower sections and P(x) C
S(z,y) for (x,y) € A. For any fived
t € D, the multivalued mapping Q(.,t) :
D — 25 s lower semi-continuous with
compact values;

The mapping Fy is a (—C1)— continuous
and C1— continuous mapping. The map-
ping Fy is a (—Cq)- continuous mapping
and for any fixed y € Y, the mapping
Ny : K x D — Ys defined by Na(y, )
Fy(y,x,z) is Co—continuous ;

For any fized (z,y) € D x K, the mapping
Fi(y,.,xz): K =Y is Ci— convex ( or,
Cy—quasi-convex-like) and any y € K the
mapping Fs(y,.,.) : D x D — Y, is di-
agonally Co-convex in the second variable
(or, diagonally C-quasi-convex-like in the
second variable);

Fl(y,y,ﬂj‘) ECH 0 and FQ(yawi) tCz 0
for any (z,y) € D x K.

TOM TAT

Then there exists (z,y) € D x K such that
z € S(z,9);y € T(z,y) and there are no

v € T(z,y),v # y,t € P(z),y € Q(T,t),t #
Z such that

Fi(g,v,z) =¢, 0 and F»(y,z,t) =¢, 0.
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SU TON TAI NGHIEM CUA BATI TOAN TUA TOI UU PARETO HON HOP PHU
THUOC THAM SO

Bai bao dua ra bai toan tua t6i wu Pareto hén hop va chi ra diéu kien du dé bai todn dé cé nghiem.
Trong trudng hgp diic biét, bai bao chi ra sy toén tai nghiém clia bai toan ta can bang Pareto hén hgp
va hé tua t6i wu Pareto.
T khéa. Bai todn tua t6i wu Pareto hén hop, dnh za C-10i, dnh za C-giong nhu tua loi, dnh za C-
lien tuc, anh za C-10i (giong nhu tua 10i) theo dudong chéo.
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