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Abstract. In this paper, we introduce mixed Pareto quasi-optimization problems and show

some sufficient conditions on the existence of their solutions. As special cases, we obtain several

results for the mixed Pareto quasi-equilibrium problem and also system of two Pareto quasi-

optimization problems.
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1 Introduction

Throughout this paper, unless otherwise spec-

ify, we denote by X,Y, Y1, Y2, Z real locally con-

vex Hausdorff topological vector spaces. Assume

that D ⊂ X,K ⊂ Z are nonempty subsets. and

Ci ⊆ Yi, i = 1, 2, are convex closed cones. 2A

denotes the collection of all subsets in the set

A. Given multivalued mappings S : D × K →
2D, T : D × K → 2K ;P : D → 2D, Q :

K ×D → 2K and single-valued mappings F1 :

K × K × D → Y1, F2 : K × D × D → Y2, we

consider the following problem:

Mixed Pareto quasi-optimization prob-

lems

Find (x̄, ȳ) ∈ D ×K

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ) such that

there are no v ∈ T (x̄, ȳ), v 6= ȳ, t ∈ P (x̄),

y ∈ Q(x̄, t), t 6= x̄ with

F1(ȳ, ȳ, x̄)�C1
F1(ȳ, v, x̄);

F2(y, x̄, x̄)�C2
F2(y, x̄, t).

Where a �C b means that a− b ∈ C.
The multivalued mappingQ(x, .) : D → 2K ,

GrQ(x̄, .) = {(t, y) ∈ D ×K|y ∈ Q(x̄, t)}
Setting (GrQ(x̄, .)) ∩ (P (x̄)×K) = A×B, the

above problem becomes to find (x̄, ȳ) ∈ D ×K
such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, ȳ, x̄) ∈ PMin(F1(ȳ, T (x̄, ȳ), x̄)|C1);

F2(y, x̄, x̄) ∈ PMin(F2(A, x̄, B)|C2),

with PMin(A|C) = {x ∈ A| there are no y ∈
A, y 6= x such that x�C y} is the set of Pareto

efficient points of A to C.

The purpose of this paper is to study the

existence for solutions of mixed Pareto quasi-

optimization problems and its applications to

different problems.

2 Preliminaries

Let Y be a Hausdorff locally convex topological

vector spaces and let C ⊆ Y be a cone. We de-

note l(C) = C ∩ (−C). If l(C) = {0} , C is said

to be pointed. Let Y ′ be the topological dual

space of Y . We denote by 〈ξ, y〉 the value of

ξ ∈ Y ′ at y ∈ Y . The topological dual cone C ′,

strict topological dual cone C ′+ of C are defined

as

C ′ = {ξ ∈ Y ′ : 〈ξ, c〉 ≥ 0, for all c ∈ C},
C ′+ = {ξ ∈ Y ′ : 〈ξ, c〉 > 0, for all c ∈ C \l(C)}.

In this paper, we allways assume that C is

a pointed cone in Y and C ′+ 6= ∅.
The following concept (see in [1], [3], [5] and

[6]) is used in our studies.

Definition 2.1 A/

1) F : D → 2Y is said to be upper (lower)

C–continuous in x̄ ∈ dom F if for any neigh-

borhood V of the origin in Y there is a neigh-

borhood U of x̄ such that F (x) ⊂ F (x̄)+V +C

(F (x̄) ⊂ F (x) + V − C, respectively)

holds for all x ∈ U ∩ domF.

2) F is upper (lower) C-convex on D if for any



x1, x2 ∈ D, α ∈ [0, 1] , it holds αF (x1) + (1 −
α)F (x2) ⊆ F (αx1 + (1− α)x2) + C

(respectively,

F (αx1 +(1−α)x2) ⊆ αF (x1)+(1−α)F (x2)−C)).

3) F is upper (lower) C-quasi-convex-like on

D if for any x1, x2 ∈ D, α ∈ [0, 1], either

F (x1) ⊆ F (αx1 + (1− α)x2) + C

or, F (x2) ⊆ F (αx1 + (1− α)x2) + C

(respectively, either

F (αx1 + (1− α)x2) ⊆ F (x1)− C
or, F (αx1 + (1− α)x2) ⊆ F (x2)− C), holds.

B/

(i) F : D × D → 2Y is called diagonally

upper (lower) C-convex in the second variable

if for any finite set {x1, ..., xn} ⊆ D,x ∈

co{x1, ..., xn}, x =
n∑
j=1

αjxj , αj ≥ 0,
n∑
j=1

αj = 1,

it holds
n∑
j=1

αjF (x, xj) ⊆ F (x, x) + C

( respectively, F (x, x) ⊆
n∑
j=1

αjF (x, xj)− C).

(ii) F is called diagonally upper (lower) C-

quasi-convex-like in the second variable if

for any finite set {x1, ..., xn} ⊆ D,x ∈

co{x1, ..., xn}, x =
n∑
j=1

αjxj , αj ≥ 0,
n∑
j=1

αj = 1,

there is an index j ∈ {1, ..., n} it holds

F (x, xj) ⊆ F (x, x) + C,

( respectively, F (x, x) ⊆ F (x, xj)− C).

We need the following lemmas in the sequel.

Lemma 2.2 ([1]) Let X,D and Y be as in the

above lemma, C ⊆ Y be a cone and ξ ∈ C ′,

F : D → Y be a lower C -continuous mapping.

Then the function f : D → R defined by

f(x) = 〈ξ, F (x)〉,

is a lower semicontinuous function.

Lemma 2.3 ([1]) Let X,D and Y be as in the

above lemma, C ⊆ Y be a cone and ξ ∈ C ′,

F : D → Y be a C -convex mapping. Then the

function g : D → R defined by

g(x) = 〈ξ, F (x)〉,

is a convex function.

The proofs are trivial.

In order to prove the main theorem, we use

the following lemma (see Lemma 4.2 in [7]).

Lemma 2.4 Let D,K be nonempty compact

convex subsets of locally convex Hausdorff topo-

logical vector spaces X,Y, respectively. Given

multivalued mappings S : D × K → 2D, H :

D ×K → 2K ;M : D → 2D. We suppose that:

(i) S is a multivalued with nonempty convex

values and has open lower sections;

(ii) H is upper semi-continuous with

nonempty closed convex values and the set

A = {(x, y) | x ∈ S(x, y), y ∈ H(x, y)} is
closed;

(iii) M has open lower sections and for all

x ∈ D,x 6∈ coM(x).

Then there exists (x̄, ȳ) ∈ D × K with x̄ ∈
S(x̄, ȳ), ȳ ∈ H(x̄, ȳ) and S(x̄, ȳ) ∩M(x̄) = ∅.

3 Existence of solutions

Given multivalued mappings S, T, P,Q and

Fi, i = 1, 2 with nonempty values as in Intro-

duction, we prove the following results:

Theorem 3.1 We assume that the following

conditions hold:

(i) D,K are nonempty convex compact sub-

sets;

(ii) S is a multivalued with nonempty convex

values and has open lower sections and

T is a continuous multivalued mapping

with nonempty closed convex values and

the subset A = {(x, y) ∈ D × K|(x, y) ∈
S(x, y)× T (x, y)} is closed;

(iii) P has open lower sections and P (x) ⊆
S(x, y) for (x, y) ∈ A. For any fixed

t ∈ D, the multivalued mapping Q(., t) :

D → 2K is lower semi-continuous with

compact values;



(iv) The mapping F1 is a (−C1)− continu-

ous and C1− continuous mapping. For

any fixed t ∈ D the mapping F2(., ., t) :

K × D → Y2 is a (−C2)- continuous

mapping and for any fixed y ∈ K, the

mapping N2 : K × D → Y2 defined by

N2(y, x) = F2(y, x, x) is C2−continuous ;

(v) For any fixed (x, y) ∈ D×K, the mapping

F1(y, ., x) : K → Y1 is C1− convex ( or,

C1−quasi-convex-like) and any y ∈ K the

mapping F2(y, ., .) : D × D → Y2 is di-

agonally C2-convex in the second variable

(or, diagonally C2-quasi-convex-like in the

second variable).

Then there exists (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ) such that

there are no v ∈ T (x̄, ȳ), v 6= ȳ, t ∈ P (x̄),

y ∈ Q(x̄, t), t 6= x̄ with

F1(ȳ, ȳ, x̄)�C1
F1(ȳ, v, x̄);

F2(y, x̄, x̄)�C2
F2(y, x̄, t).

Proof. Let ξi ∈ C ′+i , i = 1, 2 be fixed. Let

ε > 0 be arbitrary. Since ξi is continuous,

there exists a neighborhood V of the origin in

Y such that ξi(V ) ⊆ (− ε
2 ,

ε
2). We define the

multivalued mapping H : D × K → 2K by

H(x, y) = {y′ ∈ T (x, y) : 〈ξ1, F1(y, y
′, x)〉 ≤

〈ξ1, F1(y, v, x)〉,∀v ∈ T (x, y)}.
For each (x, y) ∈ D × K, we first show

that H(x, y) is a nonempty set. Indeed, for each

(x, y) ∈ D × K,T (x, y) is a compact subset.

Therefore, we apply Lemma 2.2 in Section 2

with D = T (x, y) and F = F1(y, ., x) to con-

clude that the function f : T (x, y)→ R defined

by f(v) = 〈ξ1, F1(y, v, x)〉, is a lower semicon-

tinuous function and hence there is y′ ∈ T (x, y)

such that f(y′) = min
v∈T (x,y)

f(v). This shows

〈ξ1, F1(y, y
′, x)〉 ≤ 〈ξ1, F1(y, v, x)〉, ∀v ∈ T (x, y)

and so y′ ∈ H(x, y).
Further, we show that H(x, y) is convex set,

for all (x, y) ∈ D × K. Indeed, let y′1, y
′
2 ∈

H(x, y) and λ ∈ [0, 1]. The convexity of T (x, y)

yields λy′1 + (1− λ)y′2 ∈ T (x, y) and

〈ξ1, F1(y, y′1, x)〉 ≤ 〈ξ1, F1(y, v, x)〉,
〈ξ1, F1(y, y′2, x)〉 ≤ 〈ξ1, F1(y, v, x)〉,∀v ∈ T (x, y).

If F1(y, ., x) is C1-convex, we then have

F1(y, λy′1 + (1 − λ)y′2, x) �C1 λF1(y, y′1, x) + (1 −
λ)F1(y, y′2, x). This implies

〈ξ1, F1(y, λy′1 + (1−λ)y′2, x)〉 ≤ λ〈ξ1, F1(y, y′1, x)〉+
(1− λ)〈ξ1, F1(y, y′2, x)〉, and then

〈ξ1, F1(y, λy
′
1 +(1−λ)y′2, x)〉 ≤ 〈ξ1, F1(y, v, x)〉,

for all v ∈ T (x, y). Thus, λy′1 + (1 − λ)y′2 ∈
H(x, y) and so H(x, y) is convex set.

If F1(y, ., x) is C1-quasi-convex-like, we have

F1(y, λy
′
1 + (1− λ)y′2, x) �C1

F1(y, y
′
1, x),

or, F1(y, λy
′
1 + (1− λ)y′2, x) �C1

F1(y, y
′
2, x).

In both the cases, we get

〈ξ1, F1(y, λy′1+(1−λ)y′2, x)〉 ≤ 〈ξ1, F1(y, v, x)〉,∀ v ∈
T (x, y). Thus, λy′1 + (1− λ)y′2 ∈ H(x, y) and so

H(x, y) is a convex set.

Next, we claim that H is a closed multi-

valued mapping. Let xα → x, yα → y, y′α ∈
H(xα, yα), y′α → y′. We have to show that

y′ ∈ H(x, y). Indeed, since y′α ∈ T (xα, yα) and

the upper semicontinuity and the closed val-

ues of T, we conclude that y′ ∈ T (x, y). For

y′α ∈ H(xα, yα), we have

〈ξ1, F1(yα, y
′
α, xα)〉 ≤ 〈ξ1, F1(yα, v, xα)〉, for all v ∈

T (xα, yα).

For each v ∈ T (x, y), by the lower semicon-

tinuity of T , there exists vα ∈ T (xα, yα) such

that vα → v. We have

〈ξ1, F1(yα, y
′
α, xα)〉 ≤ 〈ξ1, F1(yα, vα, xα)〉, ∀ α.

Since F1 is a (−C1)-continuous and C1− contin-

uous multivalued mapping, there exists an index

α0 such that, for all α ≥ α0, we have

F1(yα, vα, xα) ∈ F1(y, v, x) + V − C1;

F1(y, y
′, x) ∈ F1(yα, y

′
α, xα) + V − C1

and so,

〈ξ1, F1(yα, vα, xα)〉 < 〈ξ1, F1(y, v, x)〉+
ε

2
;

〈ξ1, F1(y, y′, x)〉 < 〈ξ1, F1(yα, y
′
α, xα)〉+

ε

2
.

Hence, 〈ξ1, F1(y, y
′, x)〉 < 〈ξ1, F1(y, v, x)〉+ ε.

Thus, 〈ξ1, F1(y, y′, x)〉 ≤ 〈ξ1, F1(y, v, x)〉,∀ v ∈
T (x, y).

This implies y′ ∈ H(x, y) and H is a closed

multivalued mapping. Then, it follows from the



compactness of the subset K that H1 is up-

per semi-continuous with nonempty closed con-

vex values. The subset A = {(x, y) | x ∈
S(x, y), y ∈ T (x, y)} is closed and so is the

subset {(x, y) | x ∈ S(x, y), y ∈ H(x, y)}.
Indeed, assume that xα → x, yα → y, xα ∈
S(xα, yα), yα ∈ H(xα, yα). This implies that

xα ∈ S(xα, yα), yα ∈ T (xα, yα). Since A is

closed, we conclude that x ∈ S(x, y) y ∈
T (x, y). Since H is a closed multivalued map-

ping and yα ∈ H(xα, yα); (xα, yα) → (x, y), we

get y ∈ H(x, y). Therefore, x ∈ S(x, y), y ∈
H(x, y).

Lastly, we define the multival-

ued mapping M : D → 2D by

M(x) = {t ∈ P (x)|〈ξ2, F2(y, x, x)〉 >

〈ξ2, F2(y, x, t)〉, for some y ∈ Q(x, t)}.

We verify that the multivalued mapping M

has open lower sections and for any x ∈ D,x /∈
coM(x). Indeed, we can see that

M(x) = {t ∈ D|〈ξ2, F2(y, x, x)〉 >

〈ξ2, F2(y, x, t)〉, for some y ∈ Q(x, t)} ∩ P (x).

For any t ∈ D, deduce that

M−1(t) = {x ∈ D|〈ξ2, F2(y, x, x)〉 >

〈ξ2, F2(y, x, t)〉, for some y ∈ Q(x, t)} ∩ P−1(t).

Setting B(t) = {x ∈ D|〈ξ2, F2(y, x, x)〉 >
〈ξ2, F2(y, x, t)〉, for some y ∈ Q(x, t)},
we first show that B(t) is open in D. One

can easily verify that D \ B(t) = {x ∈
D|〈ξ2, F2(y, x, x)〉 ≤ 〈ξ2, F2(y, x, t)〉, for all y ∈
Q(x, t)}.

Let xα ∈ D \ B(t) and xα → x. We have

to show that x ∈ D \ B(t). Indeed, since xα ∈
D \B(t) we conclude that 〈ξ2, F2(y, xα, xα)〉 ≤
〈ξ2, F2(y, xα, t)〉, for all y ∈ Q(xα, t).

Take an arbitrary y ∈ Q(x, t). Since Q(., t) :

D → 2K is lower semicontinuous, there exists

yα ∈ Q(xα, t) with yα → y. The C2−continuity

of N2 and the (−C2)−continuity of F2(., ., t) fol-

low that for any neighborhood V of the origin

in Y2, there exists α1 such that, for all α ≥ α1,

F2(y, x, x) ∈ F2(yα, xα, xα) + V − C2,

F2(yα, xα, t) ∈ F2(y, x, t) + V − C2.

This gives

〈ξ2, F2(y, x, x)〉 ≤ 〈ξ2, F2(y, x, t)〉, ∀ y ∈ Q(x, t),

and hence x ∈ D \ B(t). Thus, D \ B(t) is a

closed subset inD and then B(t) is an open sub-

set in D. Therefore, M−1(t) = B(t)∩P−1(t) is

open for any t ∈ D. Consequently, M has open

lower sections.

Further, assume that there is x ∈ D

such that x ∈ coM(x). Then there exists

t1, t2, ..., tn ∈M(x) such that x =
n∑
i=1

αiti, αi ≥

0,
n∑
i=1

αi = 1. This yields 〈ξ2, F2(yi, x, x)〉 >

〈ξ2, F2(yi, x, ti)〉, for some yi ∈ Q(x, ti). (3.5)

On the other hand, if F2(y, ., .) is diago-

nally C2-convex in the second variable, we have

F2(y, x, x) ∈
n∑
j=1

αjF2(y, x, tj)− C2, ∀ y ∈ K.

This yields

〈ξ2, F2(y, x, x)〉 ≤ max
z�C2

n∑
j=1

αjF2(y,x,tj)

〈ξ2, z〉 ≤

max
j=1,...,n

〈ξ2, F2(y, x, tj)〉, for all y ∈ K.

This contradicts (3.5).

If F2(y, ., .) is diagonally C2-quasi-convex-

like in the second variable, then there is an

index j ∈ {1, ..., n} it holds F2(y, x, x) �C2

F2(y, x, tj), for all y ∈ K. This implies

〈ξ2, F2(y, x, x)〉 ≤ 〈ξ2, F2(y, x, tj)〉, ∀ y ∈ K.
This also contradicts (3.5).

Therefore, for both the cases, we conclude that

x /∈ coM(x) for any x ∈ D.
Thus, S, T,H and M satisfy all assump-

tions of Lemma 2.4 in Section 2. Applying

this theorem, we conclude that there exists

(x̄, ȳ) ∈ D × K such that x̄ ∈ S(x̄, ȳ), ȳ ∈
H(x̄, ȳ) and S(x̄, ȳ) ∩M(x̄) = ∅. This implies

x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ), 〈ξ1, F1(ȳ, ȳ, x̄)〉 ≤
〈ξ1, F1(ȳ, v, x̄)〉, for all v ∈ T (x̄, ȳ). (3.6)

And, for any t ∈ P (x̄) it shows t ∈ S(x̄, ȳ) and

t /∈ M(x̄). Therefore, we get 〈ξ2, F2(y, x̄, x̄)〉 ≤
〈ξ2, F2(y, x̄, t)〉, for all y ∈ Q(x̄, t).

We now show that F1(ȳ, v, x̄) �C1

F1(ȳ, ȳ, x̄), for all v ∈ T (x̄, ȳ).

Assume that there exists v∗ ∈ T (x̄, ȳ) such

that F1(ȳ, v
∗, x̄) ≺ F1(ȳ, ȳ, x̄). This implies

〈ξ1, F1(ȳ, v
∗, x̄)〉 < 〈ξ1, F1(ȳ, ȳ, x̄)〉.

This contradicts (3. 6).

Thus, x̄ ∈ S(x̄, ȳ), ȳ ∈ T (x̄, ȳ),



F1(ȳ, v, x̄) �C1
F1(ȳ, ȳ, x̄), for all v ∈ T (x̄, ȳ).

Analogically, we obtain

F2(y, x̄, t) �C2 F2(y, x̄, x̄), for all t ∈ P (x̄), y ∈
Q(x̄, t),

and the proof is completed. 2

Remark 3.2 We assume that all the hypothe-

ses of Theorem 3.1 are satisfied except for (i)

and (iii) (respectively) replaced by

(i’) S is a lower semi-continuous multivalued

mapping with nonempty convex values;

(iii’) P is lower semi-continuous and P (x) ⊆
S(x, y) for all x ∈ S(x, y), y ∈ T (x, y)

and the subset A = {(x, y) ∈ D ×
K|(x, y) ∈ S(x, y)× T (x, y)} is closed.

Then the inequalities of that theorem is also

true.

Next, given multivalued mappings S, T with

nonempty values, F1, F2 as in Introduction,

we are interested in the system of quasi-

optimization problems of Types 1.

4 Applications

4.1 System of two Pareto quasi-
optimization problems of type 1.

Find (x̄, ȳ) ∈ D ×K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, ȳ, x̄) ∈ PMin(F1(ȳ, T (x̄, ȳ), x̄)|C1);

F2(ȳ, x̄, x̄) ∈ PMin(F2(ȳ, x̄, S(x̄, ȳ)|C2).

We have the following results:

Theorem 4.1 Assume that the following con-

ditions hold:

(i) D,K are nonempty convex compact sub-

sets;

(ii) S and T are continuous multivalued map-

pings with nonempty closed convex values;

(iii) The mapping Fi is a (−Ci)− continuous

and Ci− continuous mapping.

(iv) For any fixed (x, y) ∈ D × K, the map-

ping F1(y, ., x) : K → 2Y1 is C1− con-

vex ( or, C1−quasi-convex-like) and map-

ping F2(y, ., .) : D × D → 2Y2 is lower

C2-convex ( or, C2-quasi-convex-like ).

Then there exists (x̄, ȳ) ∈ D ×K such that x̄ ∈
S(x̄, ȳ); ȳ ∈ T (x̄, ȳ); such that there are no v ∈
T (x̄, ȳ), v 6= ȳ, t ∈ S(x̄, ȳ), t 6= x̄ with

F1(ȳ, ȳ, x̄)�C1
F1(ȳ, v, x̄);

F2(ȳ, x̄, x̄)�C2
F2(ȳ, x̄, t).

Proof. Let ξi ∈ C ′+i , i = 1, 2 be fixed. Let ε > 0

be arbitrary. Since ξi is continuous, there ex-

ists a neighborhood V of the origin in Y such

that ξi(V ) ⊆ (− ε
2 ,

ε
2). We define the multival-

ued mapping Hi : D ×K → 2K , i = 1, 2 by

H1(x, y) = {y′ ∈ T (x, y) : 〈ξ1, F1(y, y
′, x)〉 ≤

〈ξ1, F1(y, v, x)〉, for all v ∈ T (x, y)}.
H2(x, y) = {x′ ∈ S(x, y) : 〈ξ2, F2(y, x, x

′)〉 ≤
〈ξ2, F1(y, x, t)〉, for all t ∈ S(x, y)}.

By the same arguments as in the proof of

Theorem 3.1, we conclude that Hi, i = 1, 2 are

upper semi-continuous multivalued mappings

with nonempty convex and compact values.

Further, we define multivalued mapping G :

D ×K → 2D×K by

G(x, y) = H2(x, y)×H1(x, y), (x, y) ∈ D ×K.
Then, G is also a upper semi-continuous mul-

tivalued mapping with nonempty convex and

compact values. According to Ky Fan fixed

point Theorem there exists (x̄, ȳ) ∈ D×K such

that (x̄, ȳ) ∈ G(x̄, ȳ). This yields x̄ ∈ H2(x̄, ȳ)

and ȳ ∈ H1(x̄, ȳ) and then

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ);

F1(ȳ, v, x̄) �C1
F1(ȳ, ȳ, x̄), ∀v ∈ T (x̄, ȳ);

F2(ȳ, x̄, t) �C2
F2(ȳ, x̄, x̄)− (C2 \ {0});

for all t ∈ S(x̄, ȳ).

Therefrom, the proof is completed. 2

To conclude this paper, we assume that

F1(y, y, x) �C1
0 and F2(y, x, x) �C2

0 for any

(x, y) ∈ D ×K, then we obtain the above the-

orem for mixed Pareto quasi-equilibrium prob-

lems.



4.2 Mixed Pareto quasi-equilibrium
problems

Theorem 4.2 We assume that the following

conditions hold:

(i) D,K are nonempty convex compact sub-

sets;

(ii) S is a multivalued with nonempty convex

values and has open lower sections and

T is a continuous multivalued mapping

with nonempty closed convex values and

the subset A = {(x, y) ∈ D × K|(x, y) ∈
S(x, y)× T (x, y)} is closed;

(iii) P has open lower sections and P (x) ⊆
S(x, y) for (x, y) ∈ A. For any fixed

t ∈ D, the multivalued mapping Q(., t) :

D → 2K is lower semi-continuous with

compact values;

(iv) The mapping F1 is a (−C1)− continuous

and C1− continuous mapping. The map-

ping F2 is a (−C2)- continuous mapping

and for any fixed y ∈ Y , the mapping

N2 : K × D → Y2 defined by N2(y, x) =

F2(y, x, x) is C2−continuous ;

(v) For any fixed (x, y) ∈ D×K, the mapping

F1(y, ., x) : K → Y1 is C1− convex ( or,

C1−quasi-convex-like) and any y ∈ K the

mapping F2(y, ., .) : D × D → Y2 is di-

agonally C2-convex in the second variable

(or, diagonally C-quasi-convex-like in the

second variable);

(vi) F1(y, y, x) �C1
0 and F2(y, x, x) �C2

0

for any (x, y) ∈ D ×K.

Then there exists (x̄, ȳ) ∈ D × K such that

x̄ ∈ S(x̄, ȳ); ȳ ∈ T (x̄, ȳ) and there are no

v ∈ T (x̄, ȳ), v 6= ȳ, t ∈ P (x̄), y ∈ Q(x̄, t), t 6=
x̄ such that

F1(ȳ, v, x̄) �C1
0 and F2(y, x̄, t) �C2

0.
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TÓM TẮT
SỰ TỒN TẠI NGHIỆM CỦA BÀI TOÁN TỰA TỐI ƯU PARETO HỖN HỢP PHỤ

THUỘC THAM SỐ
Bài báo đưa ra bài toán tựa tối ưu Pareto hỗn hợp và chỉ ra điều kiện đủ để bài toán đó có nghiệm.

Trong trường hợp đặc biệt, bài báo chỉ ra sự tồn tại nghiệm của bài toán tựa cân bằng Pareto hỗn hợp
và hệ tựa tối ưu Pareto.

Từ khóa. Bài toán tựa tối ưu Pareto hỗn hợp, ánh xạ C-lồi, ánh xạ C-giống như tựa lồi, ánh xạ C-
liên tục, ánh xạ C-lồi (giống như tựa lồi) theo đường chéo.
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