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A real time procedure for affinely dependent parametric model
order reduction using interpolation on Grassmann manifolds
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SUMMARY

Model order reduction helps to reduce the computational time in dealing with large dynamical systems,
for example, during simulation, control, optimization. In many cases, the considered model depends on
parameters; Model order reduction techniques are, therefore, preferred to symbolically preserve this depen-
dence or to be adaptive to the change of the model caused by the variation in the values of the parameters.
In this paper, we first present the application of the interpolation technique on Grassmann manifolds to this
problem. We then improve the method for the models whose system matrices depend affinely on parameters
by considerably reducing the computational complexity on the basis of analyzing the structure of sums
of singular value decompositions and decomposing the whole procedure into offline and online stages. A
numerical example is shown to illustrate the method as well as to prove its effectiveness. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulation is nowadays indispensable to manufacturers. This step helps the designers to
create the models that meet the requirements of the producers. In steel industry, for example, one
wants to make a unit that has different hardness in different parts. This can be partly achieved by
controlling the location and magnitude of the heat source and the cooling process. Experiments can
be carried out, but it is too expensive in the real life. Therefore, one is expected to know or to predict
the properties of the workpiece without or before running the real process.

For systems that are large or complex or both, even with modern computers, the numerical
simulation still remains unfeasibly time-consuming. The dominant time is spent on solving very
large systems of differential equations or linear equations, which usually come from the spatial
discretization of the mathematical models. The vector of unknowns of these equations is called
the state vector. For systems whose high-fidelity is required or those that have complicated-shaped
acting domain, the order of the state vector may reach thousands or millions. There appears the need
to replace the large systems with ones that have lower order and approximate the original in some
sense. This field, called model order reduction (MOR), has attracted much attention, for example,
[1–6], just to name a few.

In fact, besides approximating the original system, the reduced order model (ROM) is expected to
inherit important properties. These may be stability [7, 8], passivity [9–11], some special structures
[12, 13] or the dependence on parameters. The last problem arises when one is dealing with the
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systems involving the change of the design parameters, for example, the length or the thickness of
a beam [14], or the environment parameters. For example, the film coefficients of a microthruster
unit [15,16] and the velocity field in convection–diffusion equations [17]. The systems may act very
differently when the parameters vary [18], therefore, it is a challenge that MOR methods should
preserve the dependence on the parameters or be easily adapted to their variation.

Interpolation is frequently utilized in combination with a MOR method to carry out the task. The
difference in which data to be interpolated and which MOR method to be used makes the approaches
quite distinct in the sense of their manners and their outcomes. The authors of [17, 19] chose to
interpolate the reduced transfer functions (TF). First, the reduced TF is constructed by balanced
truncation [1] at some given points in the parameter domain. Some interpolation polynomials,
which contain parameters as variables, are then used, and the reduced TF is recovered over the
whole parameter range. In [17], Lagrange and Hermite polynomials are used, whereas linear and
cubic splines are mobilized in [19]. In both approaches, the authors demonstrated that stability is
preserved and various error bounds are obtained.

For the same purpose, the method developed in [20] interpolates the matrices of the reduced
systems. At first, the reduced system matrices are locally computed at a given discrete set of
parameter values by projection. The parameter-dependent matrices of the reduced system are then
calculated by interpolating the corresponding precomputed reduced matrices. The authors pointed
out that this procedure may be meaningless if it is conducted directly, that is, without adjustment
to the chosen projected subspaces. To avoid this, some strategies were given to adjust the local
reduced models.

Matrix interpolation was also used in [21–23]. These authors considered the systems whose
matrices have some constraints such as the symmetric positive definiteness or the nonsingularity.
They argued that the direct interpolation of system matrices may result in matrices violating these
constraints. For this reason, interpolation is not carried out among the reduced system matrices,
which actually lie on a manifold, but on the tangent spaces to that manifold. Other parametric MOR
(PMOR) methods can be found in, for example, [18, 24–27].

Unlike the aforementioned approaches, the method proposed in [28] interpolates projection
subspaces. These subspaces, which depend on parameters, are located on a Grassmann manifold.
The interpolation process was performed on the tangent spaces to that manifold. It turns out that
this approach is a generalization of the one proposed in [29]. The method was then applied to the
analysis of fighter aircraft configurations. This procedure can, however, hardly be used in online
simulations because the computation of the ROM for each newly given value of parameters depends
on the order of the original system, which is supposed to be very large.

In this paper, we develop a strategy to accelerate the computation and therefore enable it to be used
in real time, that is, the complexity of the computation of the reduced system for each new parameter
value is independent of the original order. To this end, the remainder of this paper is organized
as follows. In Section 2, some facts on the interpolation technique on Grassmann manifolds and
the Krylov subspace method are recalled. The procedure for applying them to PMOR is presented
in Section 3. Section 4 illuminates how we can reduce the computational complexity in order to
accelerate the computation. A numerical example is considered in Section 5. Finally, the conclusion
is given in Section 6.

2. PRELIMINARIES

2.1. Grassmann manifolds and related facts

The Grassmann manifold G.r ,N/ is defined as the set of all r-dimensional subspaces of RN . Each
element of G.r ,N/ is spanned, not uniquely, by the columns of a full-rank N � r-matrix, called
a matrix representation. These matrices constitute the Stiefel manifold ST .r ,N/. It is sometimes
more convenient to consider the compact Stiefel manifold, which consists of columnwise orthogonal
N � r-matrices. Even though Grassmann manifolds are more frequently mentioned, the actual
computation is performed on the corresponding Stiefel manifold.
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Two matrices M1, M2 2 ST .r ,N/ represent one point in G.r ,N/, if and only if their columns
span the same subspace. In other words, there exists a nonsingular r � r-matrix A such that
M1 D M2A, hence, G.r ,N/ can be defined as the quotient manifold ST .r ,N/=GL.r/, where
GL.r/ is the general linear group of degree r . It is shown [30, 31] that G.r ,N/ is a differentiable
manifold equipped with the quotient topology. One can, therefore, mention the tangent space
TSG.r ,N/ to G.r ,N/ at point S . In fact, it is demonstrated [32, 33] that there exists one tangent
space at any point, which is of the same dimension as the Grassmann manifold. Its elements,
henceforth called vectors, are represented by N � r-matrices. In [33], a Riemann structure for a
Grassmann manifold is constructed according to which the distance on the manifold is defined. We
follow this approach in formulating the mappings mentioned later.

There is a one-to-one correspondence between a neighborhood of a point S on G.r ,N/ and the
tangent space TSG.r ,N/. This relation is composed of the exponential mapping, ExpS , which maps
the tangent space to the manifold, and its inverse, the logarithmic mapping, LogS , which maps a
neighborhood of S to the tangent space. The formulations of these mappings are essential to our
algorithm and hence are recalled here. For more information, the reader is referred to [32, 33].

Let W0 2 ST .r ,N/ be a columnwise orthogonal matrix whose columns span the subspace
S0 2 G.r ,N/. Let Y be a vector of the space TS0G.r ,N/ tangent to G.r ,N/ at S0, which is
represented by Z 2RN�r . If

Z D U†V T , (1)

whereU 2RN�r ,†D diag.�1, � � � , �r/, V 2Rr�r is the thin singular value decomposition (SVD),
then ExpS0.Y / 2 G.r ,N/ is represented by

W DW0V cos.†/CU sin.†/, (2)

where sin and cos only act on the diagonal of †.
The formulation of the exponential mapping is a consequence of the parametric representation of

a geodesic path on Grassmann manifolds given the origin and the initial velocity. In [33], a more
general formula than (2) is given and applied to the elements of ST .r ,N/ which are not necessary
to be columnwise orthogonal.

Based on the formula of the geodesic path connecting two points on Grassmann manifolds, the
formulation of the logarithmic mapping is as follows. Let S0, S1 2 G.r ,N/ be represented by two
columnwise orthogonal elements W0, W1 of ST .r ,N/. Suppose that

�
I �W0W

T
0

�
W1

�
W T
0 W1

��1
D U†V T (3)

is the thin SVD. Then LogS0.S1/ is a vector determined by

Z D U arctan.†/V T . (4)

Let us take an example by considering G.2, 3/. Suppose that S0 and S1 are two distinct points in
G.2, 3/ spanned by

W0 D

2
41 0

0 0

0 1

3
5 and W1 D

2
6664

1p
2

1p
6

� 1p
2

1p
6

0 2p
6

3
7775 , respectively.

We will compute S2 D ExpS0
�
LogS0.S1/

�
. In the following presentation, we keep only four

decimal digits. First, we have the thin SVD

�
I �W0W

T
0

�
W1

�
W T
0 W1

��1
D

2
40 1

1 0

0 0

3
5�2.2361 0

0 0

� �
�0.4472 0.8944
0.8944 0.4472

�
.
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Applying (3) and (4), the matrix representing LogS0.S1/ is

Z D

2
4 0 0

�0.5144 1.0288
0 0

3
5 .

Then by (1) and (2), S2 is spanned by

W2 D

2
4�0.1826 0.8944

0.9129 0

0.3651 0.4472

3
5 .

One can easily verify that W2 and W0 span the same subspace, that is, S2 � S0 on G.2, 3/.

2.2. Krylov subspace method

Given is an LTI dynamical system

E Px.t/D Ax.t/CBu.t/

y.t/D Cx.t/
(5)

with homogeneous initial condition. E, A 2 RN�N , B 2 RN�m, C 2 Rl�N are constant and E
is nonsingular. B and C are called the input or load matrix and the output matrix, respectively,
whereas the four of them are generally referred to as the system matrices. x.t/ is the state vector,
u.t/ represents the input function, and y.t/ stands for the output of interest. The TF of system (5)
is formulated as

H.s/D C.sE �A/�1B .

It is a l�m-matrix of rational functions of s, determining the input–output behavior of system (5) in
the frequency domain. If s0 is not a pole,H.s/ can be expanded as a Taylor series in a neighborhood
of s0

H.s/DM0CM1.s � s0/CM2.s � s0/
2C � � � .

Mi , i D 1, � � � ,1, as mentioned before, are called the moments of H.s/ about s0. It is
straightforward to verify that

Mi D�C
T ..A� s0E/

�1E/i�1.A� s0E/
�1B .

One wants to find a reduced system of the order r , r �N ,

OE POx.t/D OA Ox.t/C OBu.t/

Oy.t/D OC Ox.t/,
(6)

whose TF OH.s/ D OC.s OE � OA/�1 OB shares some first moments with H.s/. One then, however,
realizes that direct computation of coefficients ofH is doomed to failure due to the numerical insta-
bility [34, 35]. The main contribution of the Krylov subspace method is to numerically effectively
construct the reduced system: moments can be matched without computing them by projecting the
original system on a Krylov subspace, that is, the system matrices of (6) are computed as

OE DZTEW , OADZTAW , OB DZTB , OC D CW ,

where Z, W are N � r-matrices spanning the Krylov subspace of the form

Kr.K, v/D span¹v,Kv,K2v, � � � ,Kr�1vº.

The following result is the theoretical basis for multipoint implicit moment matching method or
rational interpolation.
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Theorem 2.1 ([4])
If

colspan.W /�
I[
iD1

Kri ..A� siE/�1E, .A� siE/
�1B/ (7)

and

colspan.Z/�
I[
iD1

Kqi ..A� siE/�TE, .A� siE/
�TC T /, (8)

then

�C T ..A� siE/
�1E/ki�1.A� s0E/

�1B D� OC T .. OA� si OE/
�1 OE/ki�1. OA� s0 OE/

�1 OB

for ki D 1, � � � , ri Cqi , and i D 1, � � � , I . In words, ri Cqi moments about si will be matched if the
projection subspaces used for order reduction are constructed satisfying (7) and (8).

Remark 2.1
The above theorem holds true only for SISO systems, that is, l D m D 1. For MIMO systems,
according to [36], the number of matched moments about si is Œri=m�C Œqi=l�, i D 1, � � � , I , where
Œ�� denotes the integer part of a number.

The choice for Z in (8) can be relaxed by picking any full-rank matrix that has the same size
as W . Note that in this case, because condition (8) is not satisfied, only ri (in SISO case), or
Œri=m� (in MIMO case) moments are matched. One common choice is Z D W ; we have one-
sided projection. To avoid the ill-conditionedness in the computation, matrixW is constructed to be
orthogonal, that is, W TW D I using Arnoldi process (e.g., [5]).

3. PARAMETRIC MODEL ORDER REDUCTION USING INTERPOLATION ON
GRASSMANN MANIFOLDS (IGM)

Our PMOR problem is formulated as follows: Given a parameter-dependent linear dynamical system

E.p/ Px.t/D A.p/x.t/CB.p/u.t/

y.t/D C.p/x.t/,
(9)

whereE.p/,A.p/,B.p/,C.p/ have the same size as in system (5) and depend on parameter p 2�.
We assume moreover that� is a connected subset of Rd and the dependence of E, A, B , C on p is
smooth enough for the interpolation used later, for example, continuously differentiable if the linear
Lagrange polynomial interpolation is used. Seek a reduced system

OE.p/ POx.t/D OA.p/ Ox.t/C OB.p/u.t/

Oy.t/D OC.p/ Ox.t/,
(10)

where E, A 2 Rr�r , B 2 Rr�m, C 2 Rl�r , r � N such that it approximates the original (9) in
some sense for all p in some subset (not necessarily a strict subset) of �.

We will use one-sided projection; Z in (8) need not be computed. The projection subspace in (7)
is no longer a constant subspace because the system matrices depend on p. The direct computation
of W.p/ for all p 2 � is impossible. Thus, interpolation is invoked as a tool to construct an
approximation of W.p/. Let us state the task of interpolating subspaces as follows:

Given p0, � � � ,pk 2�, denote by W0, � � � ,Wk the columnwise orthogonal matrices spanning the
projection subspaces S0, � � � ,Sk , respectively. Construct a parameter-dependent basis W.p/ for
S.p/ by interpolation of data .p0,W0/, � � � , .pk ,Wk/.
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A simple idea is to form W.p/ as a weighted sum of W0, � � � ,Wk ,

W.p/D

kX
iD1

!i .p/Wi ,

where !i .p/ are some weight functions. This solution may lead to a situation in which the resulting
matrix W.p/ is no longer a basis for a subspace. In other words, the direct interpolation on
Grassmann manifolds may result in a point that is not included in it. This can be illustrated in
the following example. Consider S1, S2 2 G.2, 3/ represented by

W1 D

2
4 0 0

9 3

18 0

3
5 and W2 D

2
64
2 1

3

1 0

0 1
3

3
75 .

Then S D 1
10
S1C

9
10
S2 is represented by

W D
1

10
W1C

9

10
W2

D

2
64
0 0
9
10

3
10

18
10

0

3
75C

2
64
18
10

3
10

9
10

0

0 3
10

3
75

D

2
64
9
5

3
10

9
5

3
10

9
5

3
10

3
75 .

Because rank.W / D 1, S … G.2, 3/. The reason is that Grassmann manifolds are, in general, not
spaces; they are not flat. Hence, interpolation must be modified or performed in an approximation
sense.

One cannot interpolate the functions whose values lie on a Grassmann manifold, but one can
do that on its tangent spaces. However, the data are given on the manifold; one has to transfer
them between the manifold and its tangent spaces. This can be done, thanks to the two mappings
mentioned in Section 2. The following procedure proposed in [28] helps to complete the aforemen-
tioned task.

Step 1 Choose the contact point for the tangent space, for example, S0.
Step 2 Map points S1, � � � ,Sk to TS0G.r ,N/ by LogS0 . By (3)–(4), LogS0.Si / D Yi is a vector

represented by

Zi D Uiarctan.†i /V
T
i ,

where �
I �W0W

T
0

�
Wi
�
W T
0 Wi

��1
D Ui†iV

T
i , i D 1, � � � , k

are thin SVD.
Step 3 Interpolate on TS0G.r ,N/ using some standard interpolation technique. Note that

LogS0G.S0/ D Y0 D 0. Given a parameter value p 2 �, denote by Y.p/ the vector on
TS0.r ,N/ corresponding to p. By any common interpolation type, Y.p/ is represented by
the matrix

Z.p/D

kX
iD1

fi .p/Zi . (11)
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Step 4 Map the interpolated result back to the Grassmann manifold. Using exponential mapping,
(1)–(2), one has to first compute the thin SVD

Z.p/D U.p/†.p/V .p/T , (12)

and then the matrix representation of the subspace

W.p/DW0V.p/ cos.†.p//CU.p/ sin.†.p//. (13)

Finally, the system matrices of (10) are constructed as

OE.p/DW T .p/E.p/W.p/,

OA.p/DW T .p/A.p/W.p/,

OB.p/DW T .p/B.p/,

OC.p/D C.p/W.p/.

(14)

Remark 3.1
This method can be combined with any MOR method that can be formulated as one-sided projection
such as proper orthogonal decomposition or one-sided Krylov subspace method.

One condition that has to be fulfilled when using this method is that S1, � � � ,Sk are not so far from
S0. This is because the connection between the Grassmann manifold and its tangent spaces is based
on geodesic paths, which are determined by second-order differential equations [33]. The closeness
of Si , i D 1, � � � , k, to S0 is a requirement for the existence of the solution of the underlying
equations. In the case that the distance, which is defined in [33], between Si and S0 is rather large,
one can partition the parameter domain into some subdomains and choose one contact point for
each subdomain.

4. REDUCTION OF COMPUTATIONAL COMPLEXITY

In online simulations, for a given p 2 �, one needs to compute the reduced system at p as fast as
possible. Applying the aforementioned 4-step procedure, one has to compute

� Interpolation on the tangent space at Step 3 .O.Nr//;
� Thin SVD (12) .O.Nr2//;
� Matrix multiplication (13), .O.Nr2//;
� Reduced system matrices (14) .O.N 2r//.

In MOR framework, N is supposed to be large. With the computational complexity of O.N 2r/, the
online computation is in general rather slow. This is the reason why the result in [28] failed to be
used in real time. To enable this, the only way is to terminate the dependence of the computational
complexity on N . The presentation of our solution will start with a simple case.

4.1. Linear interpolation and single parameter

Let � D Œa, b� and a D p0 < � � � < pk D b. Because the procedure can be applied to each
subinterval Œpi�1,pi �, we can restrict ourselves, without loss of generality, to the case k D 1. The
process of interpolating on Grassmann manifolds for the case of linear interpolation and single
parameter is illustrated via Figure 1.

At Step 3, using linear interpolation with two vectors Y1 and Y0.� 0/ leads to

Y.p/D
p � p0

p1 � p0
Y1.
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Figure 1. Interpretation of interpolation on Grassmann manifolds.

Therefore

Z.p/D U1
p � p0

p1 � p0
arctan.†1/V

T
1 . (15)

Note that (15) is still the thin SVD of Z.p/, we do not have to compute the SVD (12) in Step 4; the
basis for the projection subspace at p is straightforwardly written down as

W.p/DW0V1 cos

�
p � p0

p1 � p0
arctan.†1/

�
CU1 sin

�
p � p0

p1 � p0
arctan.†1/

�
.

Inspired by the reduced basis method [37], which was first proposed to deal with parameterized
elliptic equations, now we assume that the system matrices of (9) affinely depend on p, that is,

E.p/D

ˆEX
iD1

f Ei .p/Ei ,

A.p/D

ˆAX
iD1

f Ai .p/Ai ,

B.p/D

ˆBX
iD1

f Bi .p/Bi ,

C.p/D

ˆCX
iD1

f Ci .p/Ci ,

(16)

where Ei , Ai , Bi , Ci are independent of p. For the effectiveness of the method presented later, we
assume, moreover, thatˆE ,ˆA,ˆB ,ˆC are very small in comparison with N , and the evaluations
of f Ei , f Ai , f Bi , f Ci for all p are cheap. Indeed many mathematical models fulfill this conditions,
for example, Helmholtz problem [38], heat conduction problem [39], and thermal flow [40].
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For the sake of brevity, we denote by„.p/ the diagonal matrix ..p�p0/=.p1�p0//arctan.†1/.
Accordingly, the reduced matrices (14) are written as

OE.p/DW T .p/E.p/W.p/D

ˆEX
iD1

f Ei .p/W
T .p/EiW.p/

D

ˆEX
iD1

f Ei .p/
�
cos.„.p//V T1 W

T
0 C sin.„.p//U T1

�
Ei .W0V1 cos.„.p//CU1 sin.„.p///

D

ˆEX
iD1

f Ei .p/ cos.„.p//VT
1 WT

0 EiW0V1 cos.„.p//

C

ˆEX
iD1

f Ei .p/ cos.„.p//VT
1 WT

0 EiU1 sin.„.p//

C

ˆEX
iD1

f Ei .p/ sin.„.p//UT
1 EiW0V1 cos.„.p// (17)

C

ˆEX
iD1

f Ei .p/ sin.„.p//UT
1 EiU1 sin.„.p//.

OA.p/ is computed analogously. Likewise,

OB.p/DW T .p/B.p/D

ˆBX
iD1

f Bi .p/W
T .p/Bi

D

ˆBX
iD1

f Bi .p/ cos.„.p//VT
1 WT

0 BiC

ˆBX
iD1

f Bi .p/ sin.„.p//UT
1 Bi. (18)

OC.p/D C.p/W.p/D

ˆCX
iD1

f Ci .p/CiW.p/

D

ˆCX
iD1

f Ci .p/CiW0V1 cos.„.p//C
ˆCX
iD1

f Ci .p/CiU1 sin.„.p//. (19)

All the matrices in (17)–(19) emphasized with bold letters are independent of p; they can be
computed and stored before starting the online stage. In the following, we summarize the whole
PMOR process in terms of offline–online decomposition.

Offline We compute and store

� Two columnwise orthogonal projection matrices W0, W1 at p0 and p1 by the Krylov
subspace method.
� The thin SVD �

I �W0W
T
0

�
W1

�
W T
0 W1

��1
D U†V T .

� Parameter-independent terms: VTWT
0 EiW0V, VTWT

0 EiU, UTEiW0V, � � �.

The most expensive computation is the SVD and matrix multiplication, which are of the
order O.N 2r/.

Online Given a parameter value p, compute the reduced system matrices via (17)–(19).

The computation cost of the online stage is O.r2/, totally independent of N .
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4.2. General case

The key point of the solution for the case of linear interpolation and single parameter is the
formula (15). Thanks to the simplicity, we have an explicit expression for W.p/ without the
computation of SVD (12) as in the general case. To extend the result to the general case, we have to
deal with the SVD of the sum (11). More concretely, a suitable strategy to compute the SVD of (11)
has to be set up, and a careful combination of it with the offline–online decomposition later on must
be performed.

One can observe that no matter what the dimension of parameter domain is and/or no matter how
high the order of interpolation reaches, by (11), one derives the interpolant of the form

Z.p/D

kX
iD1

Ui˛i .p/arctan.†i /V
T
i . (20)

Obviously, each term in (20) is still a thin SVD. Hence, the problem we are dealing with is the
SVD of a sum of SVDs. Based on the modification technique for thin SVD proposed in [41], which
considered the SVD of the sum of an SVD and a low rank updating matrix, we succeeded in solving
the problem in the general case. One can write

Z.p/D

kX
iD1

Ui˛i .p/SiV
T
i

D
�
U1 � � � Uk

	264
˛1.p/S1

. . .
˛k.p/Sk

3
75
2
64
V T1

...
V T
k

3
75 . (21)

Denote byP the matrix whose columns are the left singular vectors of
�
I �U1U

T
1

�
ŒU2 � � � Uk�.

It is an orthonormal basis of the intersection of the orthogonal complement of the subspace spanned
by the columns of U1 and the subspace spanned by that of U2, � � � ,Uk . Note that the number of
columns of P , n, satisfies n6 .k � 1/r . Thanks to projection, we have

�
U1 � � � Uk

	
D
�
U1 P

	 "I U T1 U2 � � � U T1 Uk

0 P T
�
I �U1U

T
1

�
U2 � � � P T

�
I �U1U

T
1

�
Uk

#
.

For the same reason, we can write

ŒV1 � � � Vk�D V1
�
I V T1 V2 � � � V T1 Vk

	
.

Now replace the first and the last factors of (21) by the corresponding quantities, we get

Z.p/D
�
U1 P

	 "I U T1 U2 � � � U T1 Uk

0 P T
�
I �U1U

T
1

�
U2 � � � P T

�
I �U1U

T
1

�
Uk

#
2
64
˛1.p/S1

. . .
˛k.p/Sk

3
75
2
64

I
...

V T
k
V1

3
75V T1

D
�
U1 P

	
K.p/V T1 ,

where

K D

"
˛1.p/S1C ˛2.p/UT

1 Z2V1C � � � C ˛k.p/UT
1 ZkV1

˛2.p/PT
�
I�U1UT

1

�
Z2V1C � � � C ˛k.p/PT

�
I�U1UT

1

�
ZkV1

#
2R.rCn/�r . (22)
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Let us denote the thin SVD of K.p/ by

K.p/Dˆ.p/†.p/‰.p/T .

Then the SVD of Z.p/ is therefore

Z.p/D .ŒU1 P �ˆ.p//†.p/.V1‰.p//
T .

Accordingly, the basis for the projection subspace is

W.p/DW0V1‰.p/ cos.†.p//C ŒU1 P �ˆ.p/ sin.†.p//. (23)

Now, using the assumption on the affine dependence (16), the reduced system is constructed
similarly

OE.p/DW T .p/EW.p/

D

ˆEX
iD1

f Ei .p/ cos.†.p//‰.p/TVT
1 WT

0 EiW0V1‰.p/ cos.†.p//

C

ˆEX
iD1

f Ei .p/ cos.†.p//‰.p/TVT
1 WT

0 EiŒU1 P�ˆ.p/ sin.†.p// (24)

C

ˆEX
iD1

f Ei .p/ sin.†.p//ˆ.p/T ŒU1 P�TEiW0V1‰.p/ cos.†.p//

C

ˆEX
iD1

f Ei .p/ sin.†.p//ˆ.p/T ŒU1 P�TEiŒU1 P�ˆ.p/ sin.†.p//.

OA.p/ is constructed exactly the same as the previous equation. The load matrix and output matrix are

OB.p/DW T .p/B D

ˆBX
iD1

f Bi .p/ cos.†.p//‰.p/TVT
1 WT

0 Bi (25)

C

ˆBX
iD1

f Bi .p/ sin.†.p//ˆ.p/T ŒU1 P�TBi

and

OC.p/D CW.p/D

ˆCX
iD1

f Ci .p/CiW0V1‰.p/ cos.†.p// (26)

C

ˆCX
iD1

f Ci .p/CiŒU1 P�ˆ.p/ sin.†.p//,

respectively. One can realize that all quantities emphasized with bold letters in (22), (24), (25), (26)
are independent of p and therefore can be computed and stored beforehand. We now summarize the
procedure in the form of offline–online decomposition as follows.

Offline We compute and store:

� W0,W1, � � � ,Wk corresponding to p0,p1, � � � ,pk .
� ŒU1,†1,V1�, � � � , ŒUk ,†k ,Vk� representing LogS0.S1/, � � � , LogS0.Sk/, respectively.
� P 2RN�n by SVD.
� All necessary quantities (in bold letters in (22)) for matrix K.
� All necessary quantities (in bold letters in (24), (25), (26)) for reduced matrices OE, OA,
OB , OC .
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Online Given any value p in the range of p0, � � � ,pk , we compute

� Matrix K as in (22).
� The thin SVD of K: ˆ†‰T DK.
� The reduced system matrices by (24), (25) and (26).

The computation cost of the online stage is O..r C n/r2/, which can be considered as O.r3/.

Remark 4.1
Matrix P and therefore matrix K depend on the choice of the order of U1, � � � ,Uk in the sum (21).
However, W.p/ in (23) always spans the same subspace because W0 and the subspace spanned by
the columns of the first factor in the second term of W.p/ are the same with respect to any order of
U1, � � � ,Uk .

In [27], an offline–online decomposition was also used for reduction of parameter-dependent
systems. That approach, however, constructed a pair of constant projection matrices, which are
considered valid for any value of parameter. No interpolation scheme has been considered. Our
method here interpolates parameter-dependent projection subspaces, produces a subspace for each
value of the parameters and therefore can catch the dynamics of the projection subspaces. To get a
better approximation, one has to, in general, increase the number of interpolation points; this does
not result in a higher reduced order in our method whereas in [27], the issue of constructing the
projection subspaces has not been discussed clearly. Because its authors used only constant projec-
tion subspaces, we can deduce that adding more information into the projection subspaces means
increasing their dimensions. As a consequence, the reduced order becomes higher. Nevertheless, the
procedure used in [27] is simpler than here.

5. NUMERICAL EXAMPLE

In this section, the applicability of the proposed method is illustrated through an example taken from
Oberwolfach model reduction benchmark collection. This models the temperature distribution on a
chip, in which the difference in heat exchange of different parts of the chip with the surrounding has
to be taken into account. The spatial discretization of the heat transfer partial differential equation
gives a system of the order 4257:

E
dT

dt
D .A� htopAtop � hbotAbot � hsidAsid/T .t/CBu.t/

y.t/D CT .t/,

where E and A, the heat capacity and the heat conductivity matrices, are symmetric, B is the load
vector, C is the output matrix. We, however, retain only the first row of C in order to simplify the
error evaluation. Atop, Abot, and Asid are the diagonal matrices derived from the discretization of
the convection boundary conditions on the top, at the bottom and on the side of the chip with the
corresponding film coefficients htop, hbot, hsid. T is the vector of unknown temperatures. All system
matrices are sparse. The reader is referred to [15, 16] for more details.

As the first test for linear interpolation and single parameter, we fix two parameters htop, hbot and
let hsid vary from 10 to 109. The projection matrices corresponding to hsid D 10 and hsid D 10

9 are
computed by the Krylov subspace method with the intention of matching moments about s0 D 100.
The reduced orders are 20 and 40. To check the quality of the approximation, we compute the
relative errors of the reduced TF with respect to H1-norm. We use the approximation of the form

kH.�/kH1 	 max
w2Œwmin,wmax�

jH.iw/j,

where i denotes the imaginary unit. These relative errors are then compared with the corresponding
ones caused by direct computation, that is, the reduced system is constructed by fixing the parameter
at points of interest. These errors are plotted in Figure 2. We then perform the same test with hbot;
the errors are plotted in Figure 3.
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Figure 2. Relative errors using interpolation on Grassmann manifolds versus direct method; reduced order:
20 (left), 40 (right).
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Figure 3. Relative errors using Interpolation on Grassmann manifolds versus direct method; reduced order:
20 (left), 40 (right).

Table I. Computational time: linear interpolation.

Reduced order 10 20 30 40
With off–on decomp. 0.0479 0.0508 0.0563 0.0675
Without off–on decomp. 0.9468 3.0626 5.6700 7.2910
Acceleration factor 19.7851 60.3121 100.7854 107.9589

To verify the reduction in computational time, the reduced system is computed at different
parameter points. All the computations are performed with MATLAB R2010b (MathWorks, Natick,
MA, USA) on a computer using Linux/Debian 5.0, and equipped with processor 2-GHz 2-GB
AMD Athlon 64 X2 (GlobalFoundries Inc., Milpitas, CA, USA). Because the computational
time can slightly vary from point to point, we compute the reduced system at 99 points in the
interval Œ10, 10, 000�. The time, counted in seconds, consumed by the procedure with offline–online
decomposition and that without offline–online decomposition at different reduced orders is listed
in Table I.

In the second test, to simplify the error illustration, we consider the case of two parameters
(instead of all three parameters of the considered model) and bilinear interpolation. To this end, we
fix htop and let hbot and hsid vary from 50 to 5�104 and 5 to 5�104, respectively. We will examine the
reduced system at totally 100 grid points corresponding to the typical values of parameters hbot and
hsid mentioned in [15]. First of all, we compute four projection subspaces at .hbot, hsid/ D .50, 5/,
.5 � 104, 5/, .50, 5 � 104/ and .5 � 104, 5 � 104/ with the intention of matching moments about
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Figure 4. Relative errors using bilinear interpolation; reduced order: 10 (top-left), 20 (top-right),
30 (bottom-left), 40 (bottom-right).

Table II. Computational time: bilinear interpolation.

Reduced order 10 20 30 40
With off–on decomp. 0.0674 0.1982 0.4562 0.8372
Without off–on decomp. 1.0480 3.0708 5.8994 7.5586
Acceleration factor 15.5415 15.4934 12.9309 9.0287

s0 D 100. The reduced orders are 10, 20, 30 and 40. The subspace at .50, 5/ will be used as the
contact point. The relative errors of the reduced models are plotted in Figure 4. The computational
time is listed in Table II.

We can realize that the advantage of using the proposed method is different in the linear case
and the bilinear case as the reduced order varies. In the linear case, the higher the reduced order
is, the bigger the acceleration factor is, whereas in the bilinear case, it gets smaller. The reason is
that in the linear case, the procedure is simple, we do not have to compute matrix K as well as its
SVD. Therefore, when the reduced order is higher, we can take advantage of this fact. Meanwhile,
in the bilinear case, the computation of K and its SVD slows down the online stage as the reduced
order increases.

6. CONCLUSIONS

Interpolation on Grassmann manifolds can be used to produce ROMs of parameter-dependent
linear dynamical systems. By examining the formulation of exponential and logarithmic mappings,
analyzing the structure of SVD sums, and decomposing the process into offline and online stages,
we reduced the computational time and therefore enabled the usage of the procedure in real time.

Although the investigated method partly improved the approach proposed in [28] in the sense of
computational time, some problems still remain open. The first one is a strategy to choose the grid
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points. A uniform grid is preferred, but it is unclear that this is always the best choice. The second
issue is the contact point S0. It was proposed that S0 is chosen such that the distances between it
and the other grid points are small. This, however, only ensures that the other grid points belong in
a small neighborhood of S0. It has not been proven that this is the optimal choice in the sense of
approximation quality. And even though the mentioned distances are small, one cannot theoretically
ensure the existence of the geodesic paths connecting the contact point and the other grid points.
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