Thông tin chung
Tên đề tài (*) | một số thuật toán mới giải gần đúng bài toán cauchy |
Cơ quan chủ trì | Đại học Thái Nguyên |
Cơ quan thực hiện | Đại học Kinh tế và QTKD |
Loại đề tài | Đề tài cấp Bộ |
Lĩnh vực nghiên cứu | Toán học |
Chủ nhiệm(*) | Nguyễn Văn Minh |
Ngày bắt đầu | 01/2010 |
Ngày kết thúc | 12/2011 |
Tổng quan
Tổng quan tình hình nghiên cứu thuộc lĩnh vực của đề tài
Đề tài này tập trung nghiên cứu và phát triển một số vấn đề sau đây:
-) Đề xuất một vài thuật toán mới giải bài toán Cauchy cho hệ phương trình vi phân cấp 2.
-) Nghiên cứu một số tính chất định tính và định lượng như: tốc độ hội tụ, cấp chính xác, tính ổn định của phương pháp.
Các vấn đề này gắn liền với các bài toán về thuật tóan song song do giáo sư P.J. van der Houwen khởi xướng, sau đó được nghiên cứu bởi nhiều nhà toán học nổi tiếng như B.P. Sommeijer, Nguyen Huu Cong… Cho đến nay, bài toán này vẫn đang là một hướng nghiên cứu được nhiều nhà khoa học quan trong nước và trên thế giới quan tâm.
Tính cấp thiết
Phương trình vi phân có vai trò rất quan trọng trong việc mô hình hóa các bài toán thực tế như: Nghiên cứu mô hình dự báo thời tiết, mô hình về lan truyền ô nhiễm, môt hình phát triển của các hệ sinh thái,…, đều dẫn đến việc giải hệ phương trình vi phân. Việc nghiên cứu và giải gần đúng một cách hiệu quả các bài toán của phương trình vi phân là chìa khóa thành công của sự áp dụng toán học vào thực tế. Vì vậy nghiên cứu và xử lý số các phương trình vi phân đã và đang thu hút sự đầu tư nghiên cứu của cộng đồng toán học trong nước cũng như trên thế giới. Ở Việt Nam có các nhóm tác giả đã thu được những kết quả bước đầu về bài toán này. Chẳng hạn, ở Khoa Toán-Cơ-Tin học, trường ĐH KHTN-ĐHQG Hà nội có hai nhóm nghiên cứu do GS. TSKH Phạm Kỳ Anh và GS. TSKH Nguyễn Hữu Công chủ trì nhiều đề tài nghiên cứu về lĩnh vực này và đã thu được một kết quả tốt.
Đề tài này tiếp tục cải tiến và phát triển hướng bài toán trên cho hệ phương trình vi phân, vì thế lĩnh vực nghiên cứu của đề tài là thời sự và cần thiết.
Mục tiêu
- · Đề xuất một số thuật toán giải gần đúng hệ phương trình vi phân cấp 2 đồng thời chỉ ra tính mới và tính ưu việt của thuật toán so với những thuật toán đã có. Chẳng hạn, các thuật toán này cho kết quả hội tụ nhanh hơn, tính ổn định cao hơn….
- · Tạo ra một nhóm nghiên cứu mạnh về giải gần đúng PTVP ở ĐH Thái Nguyên (TS Vũ Vinh Quang, TS Nguyễn Thị Thu Thủy, TS Lê Tùng Sơn…), góp phần nâng cao năng lực nghiên cứu cho cán bộ giảng dạy Toán ứng dụng, phục vụ hiệu quả cho công tác NCKH và đào tạo sau đại học chuyên ngành Toán ứng dụng của ĐH Thái Nguyên.
· Thúc đẩy hợp tác nghiên cứu khoa học với các cơ sở nghiên cứu khác.
Nội dung
|
Các nội dung, công việc thực hiện chủ yếu |
Sản phẩm phải đạt |
Thời gian (bắt đầu-kết thúc) |
Người thực hiện |
|
Chuẩn bị tài liệu, viết đề cương |
Tài liệu, đề cương |
01/2010-04/2010 |
Chủ nhiệm đề tài |
|
Seminar 1: Về thuật toán song song trong phương trình sai phân ẩn |
Thuyết trình, thảo luận, viết bài báo thứ nhất |
04/2010-12/2010 |
Chủ nhiệm đề tài, các cộng tác viên, cao học viên |
|
Seminar 2: Thuật toán song song trong phương trình vi phân |
Thuyết trình, thảo luận, viết bài báo thứ hai |
1/2011-10/2011 |
Chủ nhiệm đề tài, GS. Nguyễn Hữu Công và các cộng tác viên |
|
Hướng dẫn luận văn thạc sĩ |
03 luận văn |
01/2010-12/2011 |
Chủ nhiệm đề tài và cao học viên. |
|
Viết báo cáo tổng kết đề tài |
Bản báo cáo |
01/2010-12/2011 |
Chủ nhiệm đề tài. |
Tải file một số thuật toán mới giải gần đúng bài toán cauchy tại đây
PP nghiên cứu
- · Phương pháp nghiên cứu: Kết hợp nghiên cứu lý thuyết với việc tính toán trên máy tính song song. Tùy trường hợp cụ thể mà có thể bắt đầu từ lý thuyết rồi tính toán để khẳng định, hoặc ngược lại, bắt đầu bằng cách dự đoán, sau đó tính toán để kiểm tra tính đúng sai của sự đoán rồi chứng minh bằng lý thuyết. Tất cả các thuật toán phải được kiểm nghiệm bằng lập trình tính toán với các bài toán mẫu trước khi công bố. Bám sát thực tế Việt Nam để đề tài có khả năng ứng dụng cao.
Hiệu quả KTXH
Sản phẩm khoa học, sản phẩm đào tạo:
Sản phẩm ứng dụng:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Số TT |
Tên sản phẩm |
Số lượng |
Yêu cầu khoa học |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
Bài báo khoa học cấp quốc tế |
01 |
Được đăng hoặc nhận đăng trong thời gian 2010-2011. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 |
Bài báo khoa học cấp quốc gia |
01 |
Được đăng hoặc nhận đăng trong thời gian 2010-2011 trên các tạp chí ngành toán cấp quốc gia. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 |
Luận văn thạc sĩ |
03 |
Bảo vệ thành công với chất lượng tốt. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ĐV sử dụng
|
|||
- Làm tài liệu nghiên cứu cho các chuyên gia về giải số PTVP.
|
BÌNH LUẬN BẠN ĐỌC(0)