Tìm kiếm theo cụm từ
Chi tiết
Tên A finiteness result for attached primes of Artinian local cohomology modules (SCIE)
Lĩnh vực Toán học
Tác giả Le Thanh Nhan, Nguyen Van Hoang
Nhà xuất bản / Tạp chí Journal of Algebra and Its Applications (SCIE) Tập 12 Số 9 Năm 2014
Số hiệu ISSN/ISBN
Tóm tắt nội dung

Let (R,m) be a Noetherian local ring. For an integer s ≥ −1 and an Artinian R-module A, we introduce the notion of A-cosequence in dimension > s and show that the set of all attached primes p ∈ \Union_{n_1,...,n_k}\Att_R(0 :_A (x^{n_1}_1 , . . . ,x^{n_k}_k )R) satisfying dim(R/p) ≥ s is a finite set whenever (x_1, . . . ,x_k) is an A-cosequence in dimension > s. As an application, we give a finiteness result for attached primes of certain Artinian local cohomology modules of a finitely generated R-module.

 

Tải file A finiteness result for attached primes of Artinian local cohomology modules (SCIE) tại đây